ARCHAELOGICAL STRUCTURES SCANNING BY MUON TOMOGRAPHY

Feasibility studies

Héctor Gomez

hgomez@apc.univ-paris7.fr

Motivation

Evaluate the *viability* to study the internal structure (in terms of *measurement time*) of a tumulus, using muon tomography

Precise simulations will help to the better understanding of the obtained results

Studied case: Kastas Amfipoli Macedonian tumulus

Archaeological Prospection Archaeol. Prospect. **11**, 145–158 (2004) Published online 12 May 2004 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/arp.228

Archaeologists have already explored a corridor driving to an internal hall (~ 3 x 4 x 3 m³), but no evidence of man-made internal structures has been found yet

Studies based on seismic tomography has already scanned the tumulus finding evidences of internal structures

Muon tomography could represent an alternative method to explore the tumulus structures (together with e.g. seismic tomography or gravimetry) in a non-destructive way

Study Definition: Geometry and Materials

Muon tomography is based in the muon detection after crossing the studied object:

Differences on the mean density of the material traversed by muons \rightarrow Differences in the detected muon rate

The measurement for different incident angles will allow to estimate the eventual position of the internal structure

Three scenarios considered:

Assuming the existence of a marble box (2 x 2 x 2 m³) inside the tumulus, composed by standard soil

Materials defined for the study (and implemented properties for simulations):

	<z></z>	<a>	ρ [g cm⁻³]	λ [g cm-²]
Standard Soil*	~12.1	~24.6	1.60	26.54
Standard Rock	11	22	2.65	26.54
Marble (CaCO ₃)	50	100.1	2.80	24.3

* Info from http://www.engineeringtoolbox.com/earth-soil-weight-d_1349.html

Study Definition: Muon input

Muons suitable to be stopped during crossing the tumulus are those with *low energy* (high energy muons will cross the tumulus independently of the details of the tumulus composition):

Initial muon Energy and angular distributions based on two different generators

Extended *Gaisser* parametrization: In principle. Original parametrization works well for $E_u > (100 / \cos \theta)$ GeV and $\theta < 70^{\circ}$

CRY generator: Based on MCNPX code and tables

Muon mean free path (from CSDA approximation) vs Muon Energy for different materials

Study Definition: Muon input

Muons suitable to be stopped during crossing the tumulus are those with *low energy* (high energy muons will cross the tumulus independently of the details of the tumulus composition):

Initial muon Energy and angular distributions based on two different generators

Muon Energy spectrum at surface

Extended *Gaisser* parametrization: In principle. Original parametrization works well for $E_{\mu} > (100 / \cos \theta)$ GeV and $\theta < 70^{\circ}$

CRY generator: Based on MCNPX code and tables

Muon incident zenith angle distribution at surface

CRY generator has higher percentage of low energy muons and slight different angular distribution with respect to the extended Gaisser parametrization \rightarrow *What is the impact on the simulation results (cross - check)*

For each simulation configuration (detector position and tumulus material) two parameters are computed

Detection Probability = Muons reaching the detector / Simulated muons (considering 100 % detection efficiency)

Normalization to Soil Tumulus case: δ_{Soil} = Detected events (Material) / Detected Events (Soil)

05/05/2015

For each simulation configuration (detector position and tumulus material) two parameters are computed

Detection Probability = Muons reaching the detector / Simulated muons (considering 100 % detection efficiency)

Normalization to Soil Tumulus case: δ_{soil} = Detected events (Material) / Detected Events (Soil)

	Centred De	tector	Side Detector		
1 Gev	Detection Probability (%)	$\delta_{_{Soil}}$	Detection Probability (%)	$\delta_{_{Soil}}$	
Standard Soil	26.93	1	34.31	1	
Standard Rock	13.55	0.50	20.81	0.61	
CaCO ₃	12.49	0.46	19.60	0.57	

	Centred De	etector	Side Detector			
~0 Gev	Detection Probability (%)	$\delta_{_{Soil}}$	Detection Probability (%)	$\delta_{_{Soil}}$		
Standard Soil	22.20	1	32.76	1		
Standard Rock	11.15	0.50	19.96	0.61		
CaCO ₃	10.30	0.46	18.76	0.57		

Angular distribution of the detected events: Centred Detector

(t)

Standard Soil

CaCO₃

(Standard Soil – CaCO₃)/CaCO₃

θ (Evts/5°)

05/05/2015

Angular distribution of the detected events: Side Detector

Standard Soil

CaCO₃

(Standard Soil – CaCO₃)/CaCO₃

Parameter to evaluate \rightarrow Minimum measurement time Δt :

The required time to significantly detect the muon rate variation (as defined in *Geophysical Journal International* 183 (2010) 1348 – 1361)

$$\Delta t > \frac{1}{T_{Det} (\delta R_{\mu})^2 \phi_{\mu}}$$

 δR_{μ} : Muon rate variation; $\delta R_{\mu} = \frac{L_{marble}}{L_{tumulus}} (1 - \delta_{soil})$

 ϕ_{μ} : Detected muon flux (for the considered solid angle and geometry)

L _{marble} [m]	L _{tumulus} [m]	Distance Det - Marble [m]	δR_{μ}	φ _μ [cm ⁻² s ⁻¹]	∆t [days]
2	140	91	6.12 10 ⁻³	2.68 10-9	> 1 year
2	22	11	4.87 10 ⁻²	5.73 10 ⁻⁵	1
2	35	16	3.06 10-2	1.80 10-5	7
L _{marble} [m]	L _{tumulus} [m]	Distance Det - Marble [m]	δR_{μ}	φ _μ [cm ⁻² s ⁻¹]	∆t [days]
2	140	91	6.10 10 ⁻³	2.65 10-9	> 1 year
2	22	11	4.87 10 ⁻²	6.08 10 ⁻⁵	1
2	35	16	3.06 10-2	1.75 10 ⁻⁵	7
	L _{marble} [m] 2 2 2 L _{marble} [m] 2 2 2 2 2	Lmarble Ltumulus [m] 2 140 2 2 22 35 Lmarble [m] Ltumulus [m] 2 35 140 2 35 140 2 140 2 2 140 2 2 140 2 2 35 35	L Distance Distance 2 140 91 2 22 11 2 35 16 L L Distance Distance 2 12 11 140 2 35 16 16 L L Distance Distance Distance 2 140 91 140	L_{marble} [m] $L_{tumulus}$ [m] $Distance Det - Marble [m]$ δR_{μ} 214091 $6.12 \ 10^{-3}$ 22211 $4.87 \ 10^{-2}$ 23516 $3.06 \ 10^{-2}$ L_{marble} [m] $L_{tumulus}$ [m] $Distance Det - Marble [m]$ δR_{μ} 214091 $6.10 \ 10^{-3}$ 214091 $6.10 \ 10^{-3}$ 22211 $4.87 \ 10^{-2}$ 23516 $3.06 \ 10^{-2}$	$L_{marble}[m]$ $L_{tumulus}[m]$ $Distance Det - Marble}[m]$ δR_{μ} $\phi_{\mu}[cm^2 s^{-1}]$ 214091 $6.12 \ 10^{-3}$ $2.68 \ 10^{-9}$ 22211 $4.87 \ 10^{-2}$ $5.73 \ 10^{-5}$ 23516 $3.06 \ 10^{-2}$ $1.80 \ 10^{-5}$ $L_{marble}[m]$ $L_{tumulus}[m]$ $Distance Det - Marble}[m]$ δR_{μ} $\phi_{\mu}[cm^2 s^{-1}]$ 214091 $6.10 \ 10^{-3}$ $2.65 \ 10^{-9}$ 22211 $4.87 \ 10^{-2}$ $6.08 \ 10^{-5}$ 23516 $3.06 \ 10^{-2}$ $1.75 \ 10^{-5}$

Simulation results: 10 GeV Threshold Comparison (cross -check)

For each simulation configuration (detector position and tumulus material) two parameters are computed

Detection Probability = Muons reaching the detector / Simulated muons (considering 100 % detection efficiency)

Normalization to Soil Tumulus case: δ_{Soil} = Detected events (Material) / Detected Events (Soil)

Simulation results: 10 GeV Threshold Comparison (cross -check)

For each simulation configuration (detector position and tumulus material) two parameters are computed

Detection Probability = Muons reaching the detector / Simulated muons (considering 100 % detection efficiency)

Normalization to Soil Tumulus case: δ_{soil} = Detected events (Material) / Detected Events (Soil)

	Centred De	tector	Side Detector			
Gaisser	Detection Probability (%)	$\delta_{_{Soil}}$	Detection Probability (%)	$\delta_{_{Soil}}$		
Standard Soil	97.77	1	97.74	1		
Standard Rock	77.35	0.79	81.10	0.83		
CaCO ₃	72.64	0.74	78.20	0.80		

	Centred De	tector	Side Dete	ector	
CRY	Detection Probability (%)	$\delta_{_{Soil}}$	Detection Probability (%)	$\delta_{_{Soil}}$	→ Higher δ _{soil} differences
Standard Soil	94.28	1	59.87	1	→ Lower Detection probabilities
Standard Rock	65.97	0.70	37.50	0.63	→ Bigger differences for Side
CaCO ₃	61.11	0.65	35.40	0.59	Detector case

Simulation results: 10 GeV Threshold Comparison (cross -check)

Parameter to evaluate \rightarrow Minimum measurement time Δt :

The required time to significantly detect the muon rate variation (as defined in *Geophysical Journal International 183* (2010) 1348 – 1361)

$$\Delta t > \frac{1}{T_{Det} (\delta R_{\mu})^2 \phi_{\mu}} - \frac{1}{1}$$

 $(T_{\text{Det}}: \text{Detector acceptance (100 cm}^2 \text{ sr considered}))$

 δR_{μ} : Muon rate variation; $\delta R_{\mu} = \frac{L_{marble}}{L_{tumulus}} (1 - \delta_{soil})$

 ϕ_{μ} : Detected muon flux (for the considered solid angle and geometry)

L _{marble} [m]	L _{tumulus} [m]	Distance Det - Marble [m]	δR_{μ}	φ _μ [cm ⁻² s ⁻¹]	∆t [days]
2	140	91	2.86 10 ⁻³	3.77 10-8	> 1 year
2	22	11	2.34 10-2	3.51 10-5	6
2	35	16	1.47 10 ⁻²	1.98 10-5	27
L _{marble} [m]	L _{tumulus} [m]	Distance Det - Marble [m]	δR_{μ}	φ _μ [cm ⁻² s ⁻¹]	∆t [days]
2	140	91	5.84 10 ⁻³	3.41 10 ⁻⁹	> 1 year
2	22	11	3.20 10-2	3.00 10-5	4
2	35	16	2 01 10 ⁻²	1.36 10 ⁻⁵	21
	L _{marble} [m] 2 2 2 L _{marble} [m] 2 2 2 2 2	Lmarble [m] 2 140 2 22 2 35 Lmarble [m] Ltomatol 2 35 2 140 2 35 2 140 2 140 2 140 2 140 2 35	Lmarble [m] Distance Det - Marble Distance [m] 2 140 91 2 22 11 2 35 16 Lmarble [m] Distance Distance Distance 2 35 16 2 140 91 2 140 91 2 140 91 2 140 91 2 12 11	L_{marble} [m] L_{umulus} [m] Distance Det - Marble [m] δR_{μ} 2 140 91 2.86 10 ⁻³ 2 22 11 2.34 10 ⁻² 2 35 16 1.47 10 ⁻² L_{marble} [m] L_{umulus} [m] Distance Det - Marble [m] δR_{μ} 2 35 16 5.84 10 ⁻³ 2 140 91 5.84 10 ⁻³ 2 22 11 3.20 10 ⁻² 2 35 16 2.01 10 ⁻²	$L_{marble}[m]$ $L_{tumulus}[m]$ $Distance Det - Marble[m]$ δR_{μ} $\phi_{\mu}[cm^{-2} s^{-1}]$ 2140912.86 10^33.77 10^8222112.34 10^23.51 10^5235161.47 10^21.98 10^5 $L_{marble}[m]$ $L_{tumulus}[m]$ $Distance Det - Marble[m]$ δR_{μ} $\phi_{\mu}[cm^{-2} s^{-1}]$ 2140915.84 10^33.41 10^9222113.20 10^23.00 10^5235162.01 10^21.36 10^5

Simulation results: 10 GeV Threshold Comparison

Gaisser	L _{marble} [m]	L _{tumulus} [m]	Distance Det - Marble [m]	δR_{μ}	φ _μ [cm ⁻² s ⁻¹]	∆t [days]
Side Detector	2	140	91	2.86 10 ⁻³	3.77 10 ⁻⁸	> 1 year
Centred Detector (θ = 0°)	2	22	11	2.34 10 ⁻²	3.51 10-5	6
Centred Detector $(\theta = 45^{\circ})$	2	35	16	1.47 10 ⁻²	1.98 10-5	27
CRY	L _{marble} [m]	L _{tumulus} [m]	Distance Det - Marble [m]	δR _μ	φ _μ [cm ⁻² s ⁻¹]	∆t [days]
CRY Side Detector	L _{marble} [m] 2	L _{tumulus} [m] 140	Distance Det - Marble [m] 91	δR _μ 5.84 10 ⁻³	φ _μ [cm ⁻² s ⁻¹] 3.41 10 ⁻⁹	∆t [days] > 1 year
CRY Side Detector Centred Detector $(\theta = 0^{\circ})$	L _{marble} [m] 2 2	L _{tumulus} [m] 140 22	Distance Det - Marble [m] 91 11	δR _μ 5.84 10 ⁻³ 3.20 10 ⁻²	<pre></pre>	∆t [days] > 1 year 4

- Different models induce correlated differences in $\delta R_{_{\!\!\!\!\!\!\!\!\!\!\!\!\!\!}}$ and detected muon flux $\varphi_{_{\!\!\!\!\!\!\!\!\!\!\!\!\!\!}}$

- → More low energy muons (CRY) → Bigger detection differences (δR_{μ}) but less flux over 10 GeV
- → As a result, the *time measurements are compatible for both models*

However, better determination of the expected muon flux is necessary, specially for small solid angles (as in the Side Detector case)

Summary & Prospects

• SUMMARY

- Scanning of a tumulus (based on Amfipoli one) by muon tomography has been simulated
 - MUSIC software for muon propagation
 - CRY and extended Gaisser parametrization for initial muon distribution \rightarrow Critical issue at low energies
 - It seems that both parametrization give equivalent results (at least for 10 GeV threshold)
- Three particular scenarios has been considered
 - 2 with the detector placed in an internal hall → Short term measurements
 - 1 with the detector at tumulus side \rightarrow Too long measurements to extract conclusions
- Initial muon flux determination has important uncertainties nowadays

POSSIBLE IMPROVEMENTS

- Study of other muon generators as simulation input
- Determination of the initial muon flux
- If a measurement will be performed, more accurate geometry definition can be done for more accurate simulations
 - Some of these simulations already done for other experiments (eg Double Chooz)

ARCHAELOGICAL STRUCTURES SCANNING BY MUON TOMOGRAPHY

Feasibility studies

Héctor Gomez

hgomez@apc.univ-paris7.fr

