SIMULATIONS FOR MUON TOMOGRAPHY

Present status

Héctor Gomez

hgomez@apc.univ-paris7.fr

• MUSIC based:

- Computing time
 - Geometry definition
 - Materials
 - ✗ Internal structures
- X Detector issues

Already some studies performed

(As presented in previous meeting)

- Computing time (optimized using a good muon sample)
- Geometry definition
 - Materials
 - Internal structures
- Detector issues
 - · Ideal detector for the moment
 - Possibility to implement detector features

- Dependence of the results with the *Muon @ Surface parametrization* considered (applicable to all further simulations)
 - Extended Gaisser parametrization:
 - As explained in A. Tang et al. Phys. Rev. D 74 (2006) 053007
 - CRY generator:
 - Cosmic ray shower library: <u>http://nuclear.llnl.gov/simulation/doc_cry_v1.7/cry.pdf</u> and <u>http://nuclear.llnl.gov/simulation/doc_cry_v1.7/cry_physics.pdf</u>
 - Muons generated from data tables coming from full MCNPX 2.5.0 simulations of muons.

• Muons don not cross more than $\sim 150 \text{ m}$ of material when crossing a tumulus.

• Independently of the tumulus composition muons with energy bigger than $\sim 100 \text{ GeV}$ would not be affected by the presence of the tumulus (furthermore, they should be considered as irreducible background).

- Is at low energy range where *difference between models are bigger* → It affects to the accuracy of our estimations.
- Also differences in the θ angular distribution affects the estimations.

• Dependence of the results with the *Muon* @ *Surface parametrization* considered (applicable to all further simulations)

 $\theta = 90 - \alpha$

- Detector on the tumulus side (180 m bottom Ø ; 60 m top Ø; 22 m height)
- \bullet 2° x 2° angular resolution assumed
- Muon angular distribution after ~2 days measurement

Open air measurement (no tumulus)

Measurement with "homogeneous" tumulus

- Tumulus shape identifiable
- In present MUSIC- based framework is difficult to define internal "structures" inside the tumulus
- However, based on simulation of different composition tumulus, some results about muon rate difference can be obtained analytically

Main results with MUSIC studies

		L _{marble} [m]	L _{Tumulus} [m]	δR _μ [s-1]	φ _μ [cm ⁻² s ⁻¹]	<i>δμ</i> [day ⁻¹]
CRY	Side Detector	2	140	5.86 10 ⁻³	3.41 10 ⁻⁹	0.02
	Centred Detector $(\theta = 0^\circ)$	2	22	3.18 10-2	3.60 10 ⁻⁵	989.10
	Centred Detector $(\theta = 45^{\circ})$	2	35	2.00 10-2	1.63 10-5	281.66
Gaisser	Side Detector	2	140	2.86 10 ⁻³	3.86 10-8	0.10
	Centred Detector $(\theta = 0^\circ)$	2	22	2.36 10 ⁻²	3.59 10 ⁻⁵	732.01
	Centred Detector $(\theta = 45^{\circ})$	2	35	1.49 10-2	2.03 10 ⁻⁵	261.33

- Comparing the rate w/wo the presence of a 2x2x2 m^3 marble box in the tumulus (at $\alpha \sim 5^\circ$)
- The muon rate difference is *less than 1 muon per day*
- However depending on the model there is a *factor 5 variation*

Conclusions and next steps

- Conclusion from MUSIC results
 - Estimation of the measurement time is highly dependent on the muon @ surface parametrization used
 - This problem will be present at Geant 4 simulations too
 - MUSIC simulation have provided all the possible information considering their limitations
 - However Geant 4 simulations will provide:
 - Cross-check of these results
 - More accuracy on the geometry definition
 - Possibility to include detector issues
 - A good first example to perform with Geant 4 could be the same done with MUSIC (using both muon generator)
 - It is necessary to estimate / simulate possible backgrounds
 - One of them could be deflected muons

• Deflected muons on air close to the tumulus/volcano or in their surface can contaminate the muon angular distribution:

• Study to evaluate this effect:

Muon deflection @ air / object surface

- Low energy muons (p \sim 0) can deflect up to 20°
- Deflection for E_{μ} > 170 MeV almost negligible

- Big deflection for low energy muons
- Deflection for $E\mu > 1$ GeV almost negligible

Muon deflection @ air / object surface

- Check that the deflection for E_{μ} > 1 GeV is almost negligible (*from CRY muon spectrum and angular distributions*)
 - Study of angular distributions of muons before and after crossing 1 m of rock
 - Direct comparison of the angles

Muon deflection @ air / object surface

- Check that the deflection for E_{μ} > 1 GeV is almost negligible (*from CRY muon spectrum and angular distributions*)
 - Study of angular distributions of muons before and after crossing 1 m of rock
 - Direct comparison of the angles

• What happens if we include *energies lower than 1 GeV*?

• What happens if we include energies lower than 1 GeV?

• The effect of deflected muons leading to bad direction reconstruction is important for muons of $E_{\mu} < 1 \text{ GeV}$

- Based on CRY muon spectrum, $E_{\mu} < 1$ GeV represents ~18% of total flux
- With MUSIC is difficult to evaluate the impact on the tomography measurements → *Re-visit with G4 framework?*