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The braid relation

Start with permutations:

• The transposition πi swaps arguments i and i+ 1 of a
function, e.g.

f(z1, z2, z3)

π1

f(z2, z1, z3)

π2

f(z2, z3, z1)

π1

π2

f(z1, z3, z2)

π1

f(z3, z1, z2)

π2

f(z3, z2, z1)

• This is called the braid relation:

πiπi+1πi = πi+1πiπi+1



The Yang–Baxter relation

• The braid relation

πiπi+1πi = πi+1πiπi+1

• The Yang–Baxter relation generalises the braid relation

Ri(w)Ri+1(wz)Ri(z) = Ri+1(z)Ri(wz)Ri+1(w)

• Ri(u) is called an R matrix, with complex parameter u.

• There are many known R matrices solving the Yang–Baxter
relation. Each solution gives a different integrable system.



The qKZ equation
What can we do with an R matrix?

• We can look for a vector |Ψ(z1, . . . , zN )〉 satisfying the qKZ
equation

Ri(zi/zi+1)|Ψ(z1, . . . , zN )〉 = πi|Ψ(z1, . . . , zN )〉

• The braid relation and Yang–Baxter relations ensure
consistency, e.g. for N = 3

R1(z2/z3)R2(z1/z3)R1(z1/z2)|Ψ(z1, z2, z3)〉
‖

π1π2π1|Ψ(z1, z2, z3)〉
‖

π2π1π2|Ψ(z1, z2, z3)〉
‖

R2(z1/z2)R1(z1/z3)R2(z2/z3)|Ψ(z1, z2, z3)〉

• But first we need an R matrix!



One boundary Temperley–Lieb algebra

• Generators e0, . . . eN−1

• Bulk relations e2
i = −[2]ei, eiei±1ei = ei:

i

= −[2]

i
i i+1

=

i−1 i

=

i

• Boundary relations e2
0 = e0, e1e0e1 = e1:

0

=

0
10

=

1

• With t-number

[u] =
tu − t−u

t− t−1
.



Action on Ballot paths

• Ballot paths of length N = 3

Ω = α1 = α2 =

• Example

e2|Ω〉 = = = = = |α2〉

• Matrix form

e2 =


|Ω〉 |α1〉 |α2〉

|Ω〉 0 0 0
|α1〉 0 0 0
|α2〉 1 1 −[2]





The R-matrix

• Can check that this R-matrix satisfies the Yang-Baxter
relation:

Ri(z) =
t− t−1z

tz − t−1
1− z − 1

tz − t−1
ei

• With the boundary operator, define the K-matrix

K0(z) =
(1− z−1ζ−1

1 )(z − tζ1)

(z − ζ1)(t− z−1ζ−1
1 )

1− (1− t)(z − z−1)

(z − ζ1)(t− z−1ζ−1
1 )

e0

which satisfies the reflection equation

K0(z)R1(wz)K0(w)R1(w/z) = R1(w/z)K0(w)R1(wz)K0(z)
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Mixed boundary qKZ equation

• Write a general vector in the Ballot path basis as

|Ψ(z1, . . . , zN )〉 =
∑
α

ψα(z1, . . . , zN )|α〉

• The bulk part of the qKZ equation

Ri(zi/zi+1)|Ψ(z1, . . . , zN )〉 = πi|Ψ(z1, . . . , zN )〉

• And in component form:∑
α

ψα(z1, . . . , zN )
(
ei|α〉

)
=
∑
α

(
Ti(−1)ψα(z1, . . . , zN )

)
ei|α〉

where Ti(u) is an operator acting on Laurent polynomials.

• The boundary equations

K0(z−1
1 )|Ψ(z1, z2, . . . , zN )〉 = |Ψ(z−1

1 , z2, . . . , zN )〉,
|Ψ(z1, . . . , zN−1, zN )〉 = |Ψ(z1, . . . , zN−1, t

3z−1
N )〉
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Solution of the qKZ equation

Theorem (de Gier, Pyatov 2010)

The solutions of the qKZ equation have a factorised form

ψα(z1, . . . , zN ) =

↗ui,j∏
i,j

Ti(ui,j)ψΩ(z1, . . . , zN )

The product is constructed using a graphical representation of the
Hecke generators

T0(u) = u

0 1

, Ti(u) =

i−1

u

ii+1

.

These are operators on Laurent polynomials, which also satisfy
Yang–Baxter and reflection relations.



Factorised solutions
• Factorised solution for ψα(z1, . . . , zN )

• Fill to maximal Ballot path Ω = (N,N − 1, . . . , 0)
• Label corners with 1
• Label remaining tiles by rule
ui,j = max{ui+1,j−1, ui−1,j−1}+ 1

1
12

3 3
4

5

ψα = T0(1).T1(2)T0(3).T3(1)T2(3)T1(4)T0(5)ψΩ

and
ψΩ = ∆−t (z1, . . . , zN )∆+

t (z1, . . . , zN )
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Alternate filling

Fill with consecutive integers along rows, e.g. for previous shape
tilted by 45 °

ψ4,2,1(u1 + 1, u2 + 1, u3 + 1)

=
u1+1u1+2u1+3

u1+

4

u2+1
u2+

2

u3+

1

= T1(u3 + 1)T2(u2 + 1)T3(u1 + 1)ψΩ

where

Ta(u+ 1) = Ta−1(u+ 1) . . . T1(u+ a− 1)T0(u+ a)

gives a row of length a, numbered from u+ 1.



Sum rule

Theorem (de Gier, F)

The staircase diagram has the expansion

ψā1,...,ān(u1 + 1, . . . , un + 1) =
∑
α

cαψα(z1, . . . , zN ),

where the coefficients cα are non-zero and are monomials in

yi = − [ui]

[ui + 1]
, ỹi = −B0(ui + 1).

ψā1,...,ān(u1 + 1, . . . , un + 1) =

u1+1. . .

. . .

. . .

un+
1



Specialisation of the sum rule

• At specialisation ui = 1, t = e±2πi/3, all coefficients cα = 1.

ψā1,...,ān(2, . . . , 2) =
∑
α

ψα(z1, . . . , zN ),

and at this point there is a closed form for the sum
[Zinn-Justin 2007].

• Connections to Temperley–Lieb loop model and
Razumov–Stroganov conjectures

0 1 2 3

Ballot path

↔
0 1 2 3

Link pattern

?↔

1

2 3

Fully packed loops



Proof of the sum rule

• Recall the sum rule

ψā1,...,ān(u1 + 1, . . . , un + 1) =
∑
α

cαψα(z1, . . . , zN ),

where the coefficients cα are non-zero and are monomials in
yi, ỹi.

• Proof requires two steps:

• Show how to expand the staircase diagram in terms of
components ψα.

• Show that each component ψα arises exactly once in the
expansion.



Expanding the staircase

• First expansion using result

ψā1,...,ān(u1 + 1, . . . , un + 1)

=
∏

i=n,n−1,...,1

(Tāi(1) + yiTāi−1(1) + ỹi)ψΩ.

• Example term from expansion with N = 12

10 9 8 7 6 5 4 3 2 1 y1

9 8 7 6 5 4 3 2 1 1
7 6 5 4 3 2 1 1

ỹ4
2 1 y5

1 1
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ψā1,...,ān(u1 + 1, . . . , un + 1)

=
∏

i=n,n−1,...,1
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Expanding the staircase

• First expansion using result

ψā1,...,ān(u1 + 1, . . . , un + 1)

=
∏

i=n,n−1,...,1

(Tāi(1) + yiTāi−1(1) + ỹi)ψΩ.

• Example term from expansion with N = 12

10 9 8 7 6 5 4 3 2 1

9 8 7 6 5 4 3 2 1
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2 1

1

• Coefficient y1ỹ4y5, but a second expansion is required for
terms like this one.



Working backwards - an algorithm

• Work backwards from ψα to term from staircase expansion.

ψα(z1, . . . , zN ) =

110 9 8 7 6 5 4 3

8 7 6 5 4 3 2

6 5 4 3 2 1

3 2

1

• Draw empty maximal staircase

• Add rows to staircase, bottom up, in lowest place each fits

• Draw in ribbons, starting from outer diagonal

• Coefficient cα = y1ỹ4y5.
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Conclusion and future work

• We have found a factorised form for a sum rule for the mixed
boundary qKZ equation.

• We would like to find a way to evaluate the general sum, or at
certain specialisations. This may shed light on
Razumov–Stroganov conjectures.

• There are connections to special functions (Macdonald and
Koornwinder polynomials) and special bases of the Hecke
algebra, which need to be clarified.


