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The braid relation

Start with permutations:

e The transposition 7; swaps arguments ¢ and 7 + 1 of a
function, e.g.

Zl7 22, Z3
22721723 21723,2’2)
T2 ™1

f(z27 Z3, Zl) f(z?n 21, z2)
R\ T2

f(z3, 22, 21)
e This is called the braid relation:

TT41TG = Ti41T3 T 41



The Yang—Baxter relation

The braid relation
TT+1T = T+ 1 T T4-1
The Yang—Baxter relation generalises the braid relation
Ri(w)Riy1(wz)Ri(2) = Rit1(2) Ri(wz) Ri1 (w)

R;(u) is called an R matrix, with complex parameter w.

There are many known R matrices solving the Yang—Baxter
relation. Each solution gives a different integrable system.



The gKZ equation
What can we do with an R matrix?

e We can look for a vector |W(z1,...,zy)) satisfying the gKZ
equation

Ri(zi/ziﬂ)]‘ll(zl, e ,ZN)> = 7(1"\1/(2’1, ey ZN)>

e The braid relation and Yang—Baxter relations ensure
consistency, e.g. for N =3

R1(22/23)Ra(21/23) Ra(21/22)|¥ (21, 22, 23))
|

T T2 |\IJ(21, Z2, Z3)>

momime|V(21, 22, 23))

|
Ro(z1/22) Ri(21/23) Ra(22/23) |V (21, 22, 23))

e But first we need an R matrix!



One boundary Temperley—Lieb algebra

Generators eg,...en_ 1

Bulk relations e 2)e;, eiejr1€; = e;:
i 11+1 11—

Boundary relations 60 = ey, €1€0€1 = €1:

ED@O

With ¢-number



Action on Ballot paths
e Ballot paths of length N =3

Q:h alzh QQZM

e Example

838K

e Matrix form

1) o) o)
|€2)
er = |ag)
|a2)

0 0
0 0
)

_= o O



The R-matrix

e Can check that this R-matrix satisfies the Yang-Baxter
relation:
t—t1z z—1
tz—t=1"  tz—t1"




The R-matrix

e Can check that this R-matrix satisfies the Yang-Baxter

relation:
- t=1z z—1

I
e With the boundary operator, define the K-matrix
(1—2*141_1)(2—%1)]1 1-t)(z—2")

Ko(z) = - 2

(z—C)(t—272Y) T (=)t — 271

which satisfies the reflection equation

Ko(z)Ry(wz)Ko(w)Ry(w/z) = R1(w/z)Ko(w) Ry (wz)Ko(2)



Mixed boundary ¢KZ equation

e Write a general vector in the Ballot path basis as
O(z1,..28)) = > Palz1,- ., 28)|a)
6

e The bulk part of the ¢KZ equation

Ri(zi/zi+1)|\11(zl, ‘e ,ZN)> = 7Ti|\I’(2:1, ey ZN)>

e And in component form:
S alas . ,zN)<ei|a)) = (T,-(—1)¢a(z1, .. .,ZN))eZ-|a>

where T;(u) is an operator acting on Laurent polynomials.



Mixed boundary ¢KZ equation

e Write a general vector in the Ballot path basis as

O(z1,..28)) = > Palz1,- ., 28)|a)

e The bulk part of the ¢KZ equation
Ri(2i/zi01)[¥ (21, ... 2n)) = i (21, .. ., 2N))
e And in component form:
S alas . ,zN)<ei|a)) = (T,-(—1)¢a(z1, .. .,ZN))eZ-|a>
(e (0%
where T;(u) is an operator acting on Laurent polynomials.

e The boundary equations

KO(Zl_l)‘\II(Zl7227 .. ‘7ZN)> = ’\Il(zl_lvz27 .- '7ZN)>7

‘\11(21, ey ZN -1, ZN)> = ]\ll(zl, ‘e ,ZNfl,tng/l»



Solution of the ¢KZ equation
Theorem (de Gier, Pyatov 2010)

The solutions of the qKZ equation have a factorised form

/i
’L,ba(zl,...,ZN) = H Ti(ui’j)¢g(z1,...,zN)

Z'7j

The product is constructed using a graphical representation of the
Hecke generators

To(u) = b ; Ti(u) = @

01 1—1ii+1

These are operators on Laurent polynomials, which also satisfy
Yang—Baxter and reflection relations.



Factorised solutions

e Factorised solution for 1, (21,...,2N)
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Factorised solutions

Factorised solution for 94 (21, ..., 2N)

Fill to maximal Ballot path @ = (N, N —1,...,0)
Label corners with 1

Label remaining tiles by rule

wi; = max{ujt1j—1,Ui—1,j—1} + 1
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Factorised solutions

Factorised solution for 94 (21, ..., 2N)

Fill to maximal Ballot path @ = (N, N —1,...,0)
Label corners with 1

Label remaining tiles by rule

wi; = max{ujt1j—1,Ui—1,j—1} + 1




Factorised solutions

Factorised solution for 94 (21, ..., 2N)

Fill to maximal Ballot path @ = (N, N —1,...,0)
Label corners with 1

Label remaining tiles by rule

wi; = max{ujt1j—1,Ui—1,j—1} + 1

Yo = To(1).71(2)To(3).T3(1)T2(3)T1(4)To(5)vq
and
o = A;(zl,...,zN)Af(zl, ...y 2ZN)



Alternate filling

Fill with consecutive integers along rows, e.g. for previous shape
tilted by 45 °

a1 (ur + 1, ug + 1,uz + 1)

w1+
4 |v1+3|ur+2|ur+1

w2 H
ug+1

w3
1

= 7'1(11,3 + 1)7-2('&2 + 1)73(711 + 1)1/}9

where
Tolu+1) =T, 1(u+1)...Th(u+a—1)Th(u+ a)

gives a row of length a, numbered from u + 1.



Sum rule
Theorem (de Gier, F)

The staircase diagram has the expansion

Varsoan (W1 + 1, +1) =Y cathalz1, ..., 2n),
«

where the coefficients c,, are non-zero and are monomials in

[ui

- ji = —Bo(u; + 1).
[Uz‘i‘l]’ yl 0(ul+ )

Yi =

A -

1[)@1’.“7@”(’&1 + 1, oy Up + 1) =

n




Specialisation of the sum rule

e At specialisation u; =1, t = et27/3 3|l coefficients ¢, = 1.
1/%11, .a . Z¢a 21y )7

and at this point there is a closed form for the sum
[Zinn-Justin 2007].

e Connections to Temperley—Lieb loop model and
Razumov—Stroganov conjectures

L
01 2 3
Link patt
Ballot path i pattern 1 ~|

Fully packed loops



Proof of the sum rule

e Recall the sum rule

Yay,an(ul + 1, u, +1) = anwa(zl, c - 2ZN),
(07

where the coefficients ¢, are non-zero and are monomials in
e Proof requires two steps:

e Show how to expand the staircase diagram in terms of

components .
e Show that each component v, arises exactly once in the

expansion.



Expanding the staircase

e First expansion using result

Yay,.an(w1 + 1, u, + 1)
= JI a@)+uTa-101) + ) o

i=n,n—1,...,1

e Example term from expansion with N = 12

N
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Expanding the staircase

e First expansion using result

Yay,.an(w1 + 1, u, + 1)

= JI a@)+uTa-101) + ) o

i=n,n—1,...,1

e Example term from expansion with N = 12

\QI987654321

1



Expanding the staircase

e First expansion using result

Yay,.an(w1 + 1, u, + 1)
= JI a@)+uTa-101) + ) o

i=n,n—1,...,1

e Example term from expansion with N = 12

\QI987654321 Y1




Expanding the staircase

e First expansion using result

Yay,.an(w1 + 1, u, + 1)
= JI a@)+uTa-101) + ) o

i=n,n—1,...,1

e Example term from expansion with N = 12

\QI987654321 Y1




Expanding the staircase

e First expansion using result

Yay,.an(w1 + 1, u, + 1)
= JI a@)+uTa-101) + ) o
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Expanding the staircase
e First expansion using result
wt_u,...,ﬁn (U1 =+ 1, ceyUp T+ 1)
= [I @@ +uT 1) +5) o

i=n,n—1,...,1

e Example term from expansion with N = 12

WQ87654321

o Coefficient y174y5, but a second expansion is required for
terms like this one.



Working backwards - an algorithm

e Work backwards from 1, to term from staircase expansion.
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Working backwards - an algorithm

e Work backwards from 1, to term from staircase expansion.

o
'S
w

1
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Working backwards - an algorithm

e Work backwards from 1, to term from staircase expansion.

o
'S
w

1

NQols]7

wa(zl,...,ZN): 5

6
5
4
2
N
e Draw empty maximal staircase

e Add rows to staircase, bottom up, in lowest place each fits

N |




Working backwards - an algorithm

e Work backwards from 1), to term from staircase expansion.

Oofs8|7|6]|5[4]3]|1

Ya(z1,...,2N) =

e Draw empty maximal staircase
e Add rows to staircase, bottom up, in lowest place each fits
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Working backwards - an algorithm

Work backwards from 1, to term from staircase expansion.

Ya(z1,...,2N) =

Draw empty maximal staircase
Add rows to staircase, bottom up, in lowest place each fits
Draw in ribbons, starting from outer diagonal

Coefficient cq = y1§ays.



Conclusion and future work

e We have found a factorised form for a sum rule for the mixed
boundary ¢KZ equation.

e We would like to find a way to evaluate the general sum, or at
certain specialisations. This may shed light on
Razumov—Stroganov conjectures.

e There are connections to special functions (Macdonald and
Koornwinder polynomials) and special bases of the Hecke
algebra, which need to be clarified.



