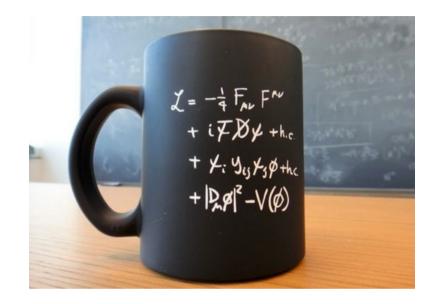


The CMS group at IPHC (et sujets de stages/thèses)

Jeremy Andrea, On behalf of CMS-IPHC group


UNIVERSITÉ DE STRASBOURG

The status of the SM

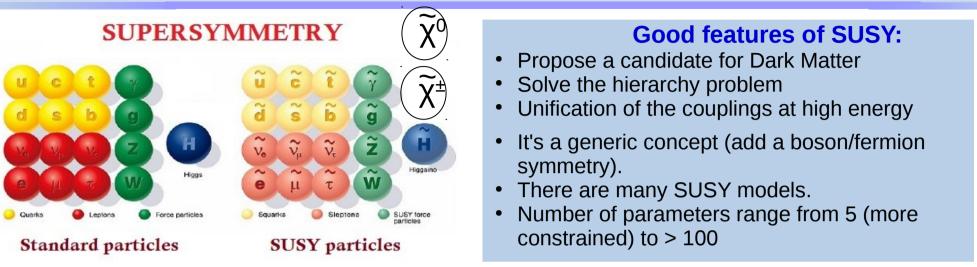
- The SM was successfully validated by many experimental measurements performed over many years.
- The LHC results have even more consolidated the SM :
 - with new extremely precise measurements,
 - with the discovery of predicted SM processes/particles : the Higgs boson is the brightest example.

- However the MS is incomplete!
- There are new (elementary) particles to be found !
- One of the goals of the LHC : probe SM physics and find new physics.

Beyond the Standard Model

- Despite it's successful predictions, the SM suffers from limitations/imperfections :
 - Not predicting the Dark Matter (DM) nor the Dark Energy,
 - No explanation for matter/antimatter asymmetry,
 - No massive neutrinos,
 - No explanation for the observed hierarchy of masses,
 - "Unstable" Higgs mass and fine tuning,
 - Not compliant with the GUT,
 - Etc...

- Many models on the market, proposing solutions to these "problems" :
 - Super-symmetry (SUSY),
 - Extra-dimension, Higgs compositness
 - etc...



- How can we search for New Physics at colliders ?
 - Direct searches of new particles ! Many (almost infinite number of) channels, model dependent but has the best sensitivity.
 - Indirect searches ! Re-interpretation of precision measurements (anomalous couplings, close signatures) or suppressed processes.

Direct searches : Supersymmetry

- Susy has an extended Higgs sector => can be revealed by observing new Higgs bosons.
- SM : Higgs field is a complex SU(2)_L doublet, choose minimum \rightarrow one scalar Higgs field, give mass to bosons and fermions (Yukawa),
- SUSY : needs at least 2 Higgs doublets, more Higgs boson and Higgs-Higgs couplings.
 - MSSM : 2 scalars, 1 neutral pseudo-scalars and 2 charged Higgs,
 - N-MSSM : 3 scalars, 2 neutral pseudo-scalars and 2 charged Higgs

	Names	Spin	pin P_R Mass Eigenstates		Gauge Eigenstates
MSSM	Higgs bosons	0	+1	$h^0 H^0 A^0 H^{\pm}$	$H_{u}^{0} H_{d}^{0} H_{u}^{+} H_{d}^{-}$
N-MSSM		H_1, H_2	H_2, H	$_{3}$ A_{1} , A_{2} H^{+} , H^{-}	$\begin{bmatrix} H_u^0 & H_u^+ & H_d^0 & H_d^- \end{bmatrix}$

- Model independent search :
 - Search for deviations from SM predictions <=> precision measurements,
 - Search for processes that are not existing in the SM (with no new particles involved at tree level).
- Effective field theory approach :
 - New particles contributes at the loop level,
 - If the new particles are heavy => modelled as "effective" new vertex that links only SM particles.
- Example : Flavour Changing Neutral Current
 - Highly suppressed in the SM because of the GIM mechanism,
 - Largely enhanced in many new physics models.

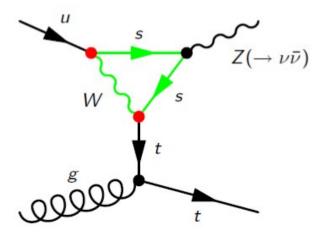
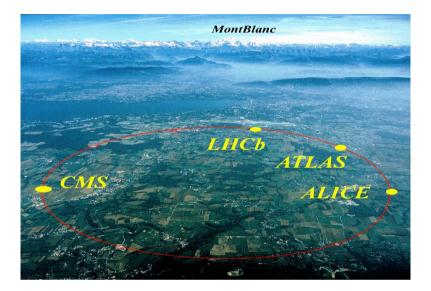
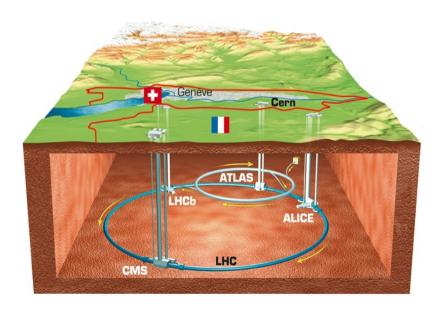


TABLE I. Branching ratios for FCNC decays of the top quark in the SM and several possible extensions: the quark-singlet model (QS), the two-Higgs doublet model (2HDM), the minimal supersymmetric model (MSSM) and supersymmetry (SUSY) with *R*-parity violation. See Refs. [14,15] for details.

Process	SM	QS	2HDM	MSSM	₿ SUSY
$t \rightarrow uZ$	$8 imes 10^{-17}$	$1.1 imes 10^{-4}$		2×10^{-6}	3×10^{-5}
$t \rightarrow u\gamma$	3.7×10^{-16}	$7.5 imes 10^{-9}$		2×10^{-6}	$1 imes 10^{-6}$
$t \rightarrow ug$	$3.7 imes 10^{-14}$	$1.5 imes 10^{-7}$		$8 imes 10^{-5}$	$2 imes 10^{-4}$
$t \rightarrow cZ$	$1 imes 10^{-14}$	$1.1 imes10^{-4}$	$\sim 10^{-7}$	$2 imes 10^{-6}$	3×10^{-5}
$t \rightarrow c \gamma$	$4.6 imes 10^{-14}$	$7.5 imes 10^{-9}$	$\sim 10^{-6}$	2×10^{-6}	$1 imes 10^{-6}$
$t \rightarrow cg$	$4.6 imes 10^{-12}$	$1.5 imes 10^{-7}$	$\sim \! 10^{-4}$	$8 imes 10^{-5}$	$2 imes 10^{-4}$

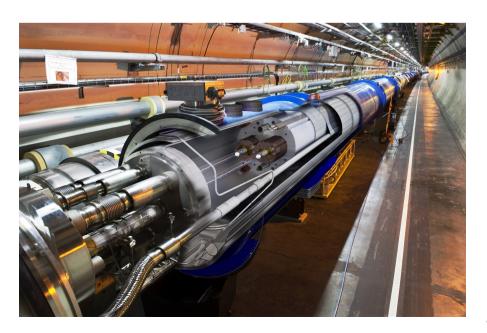

Experimental setup



The Large Hadron Collider

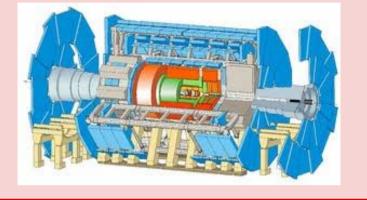
- CERN is one of the largest laboratories in the world, located in the Franco-Swiss border.
- One of the biggest European institutions (20 countries).
- It involves about 10000 scientists from all over the world.
- Large Hadron Collider : the most powerful accelerator of particles => colliding protons at 7/8 and now 13 TeV.
- Four experiments/collaborations to detect particles:
 - Two multi-purpose experiments : ATLAS and CMS.
 - ALICE : studying "dense" collisions (Lead-Lead).
 - LHCb : study of matter-antimatter asymmetries.

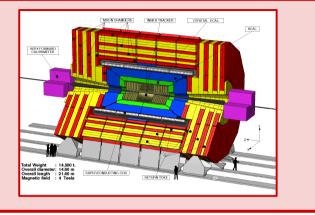




The LHC in numbers

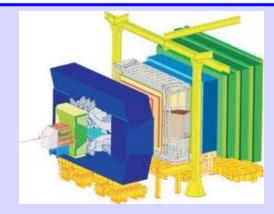
- LHC is (mainly) composed of :
 - Accelerating cavities, to accelerate protons.
 - >9000 magnets, providing a B field of 8.5 T, to bend the proton beams.
- Colliding protons (heavy ions) underground (-100 m), 27km long.
 - First 7 TeV collisions in 2010, then 8 TeV, stopped fall 2012 for maintenance.
 - Long shutdown ongoing, 13 TeV collisions started in 2015.
- 25 years of developments and construction.



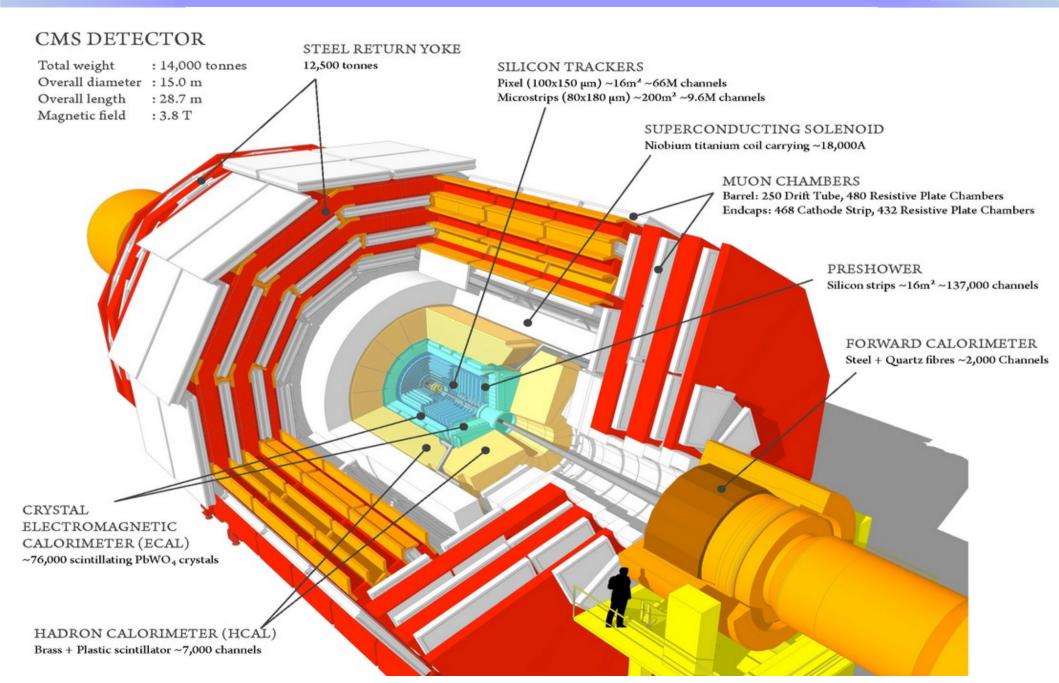


The LHC experiments

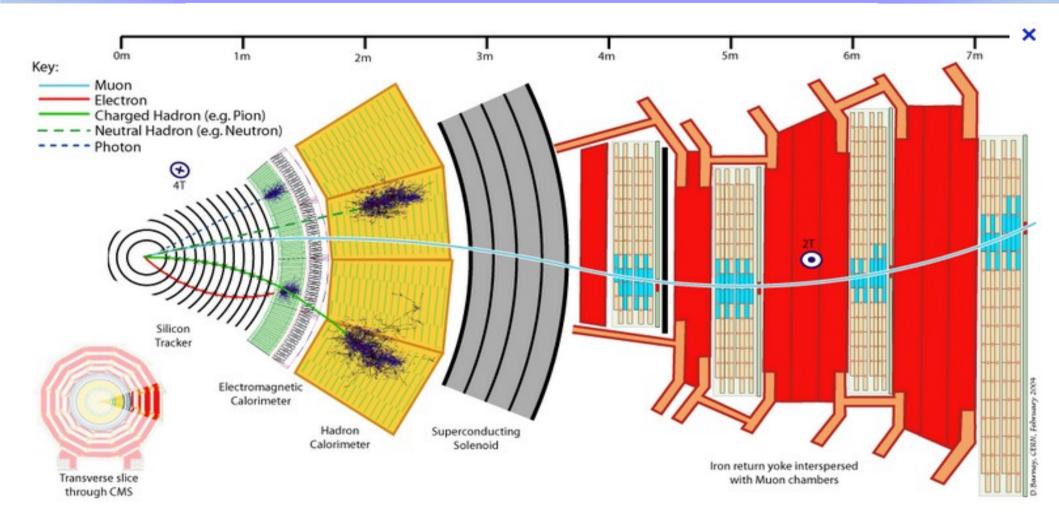
• ATLAS and CMS : multipurpose detectors (SM, Higgs, new physics).



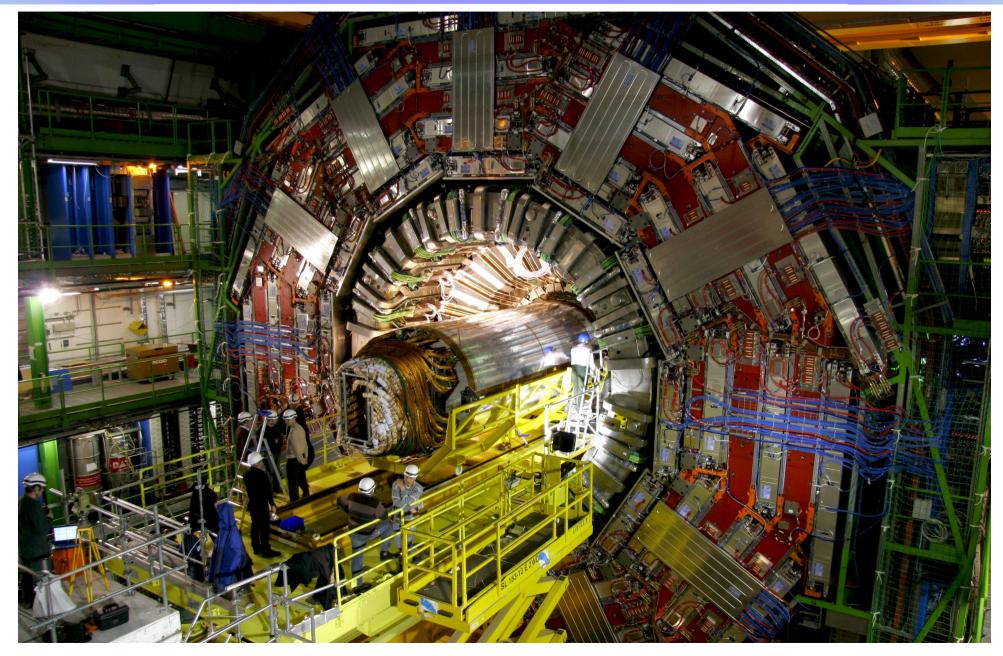
 ALICE : dedicated to the study "dense" collisions : ions-ions => study the matter in conditions of the early universe.


• LHCb : dedicated to the study matter-antimatter asymmetries.

The CMS detector

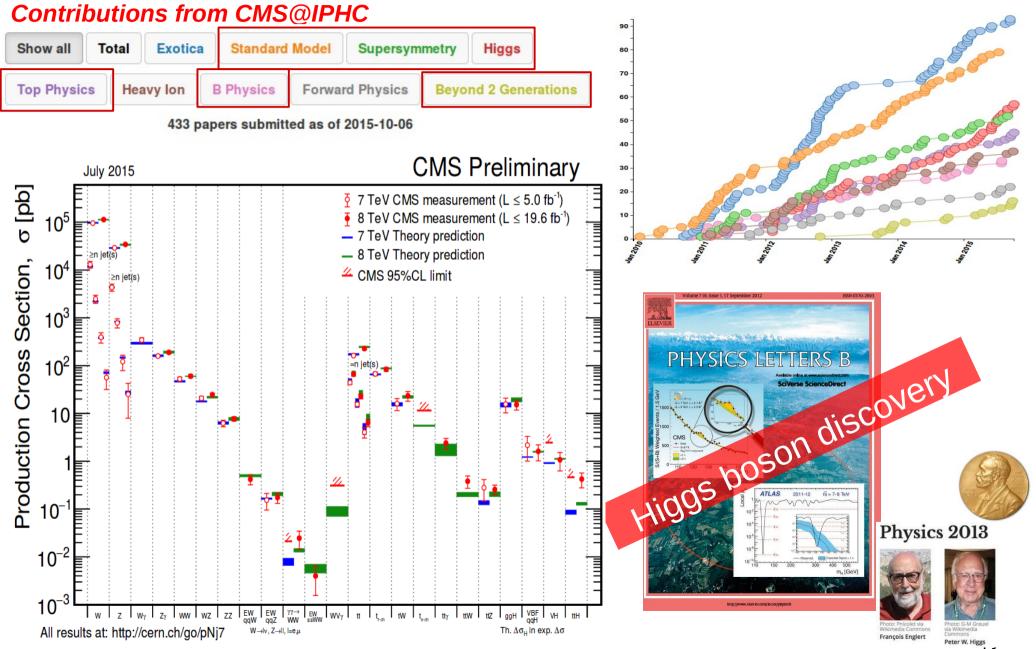


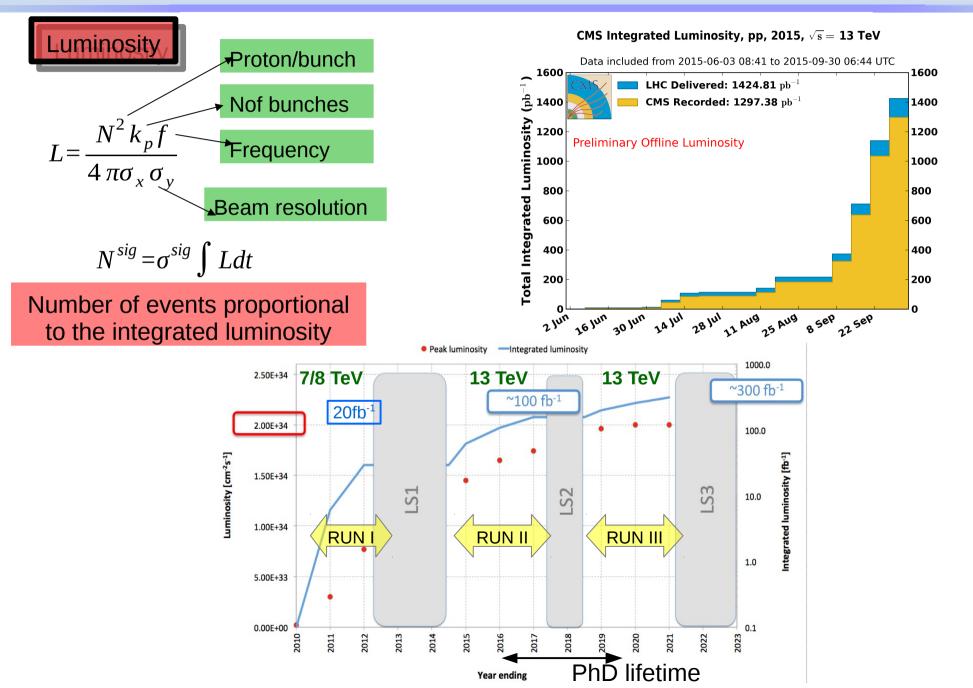
Object reconstruction in CMS



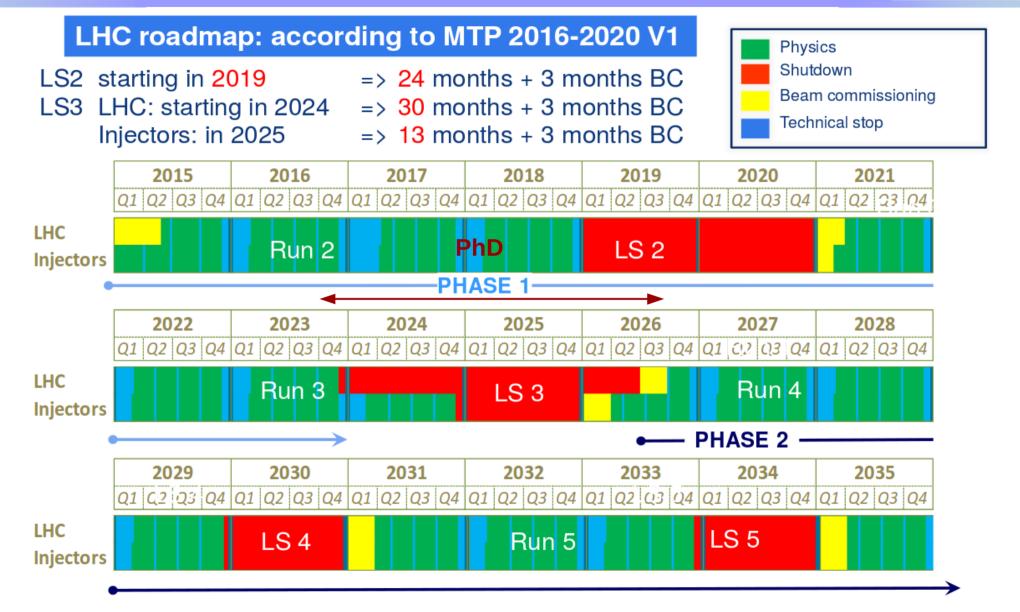
- Reconstructing particles with CMS :
 - Muons, electrons, photons, charged and neutral hadrons,
 - Based on the particle flow algorithm : combine in an optimal way the information from the different sub-detectors.

The CMS detector



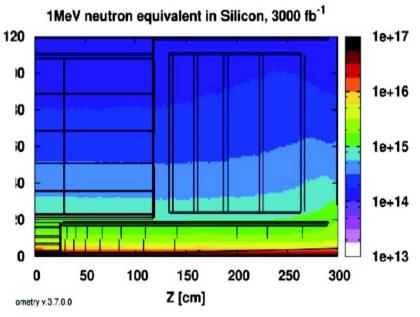

CMS physics during run I

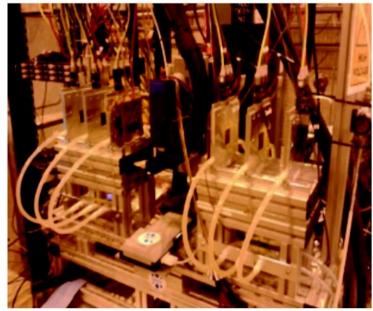
Luminosity at run I and II



LHC road map

Increase of the luminosity requires an upgrade of the detector. Detector upgrade for phase II requires R&D studies now !




- High-Lumi LHC (phase 2 - 2025):

- 200 pile-up, luminosity up to 1e+35cm⁻²s⁻¹
- Tracker upgrade:
 - Replace with a detector more radiation-hard (fluence 5e+14 neq/cm²)
 - Will contribute to data acquisition at level 1 trigger
 - Needs upgrade of the data acquisition (DAQ) electronics to sustain rates

- IPHC:

- CMS IPHC in charge of the CMS DAQ for tracker upgrade phase 2
- Co-development of a back-end card with CERN
- Involvement in beam tests: sensor efficiency, DAQ setup, data analysis

The CMS team at IPHC

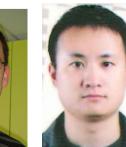
L'équipe CMS de l'IPHC

Jean-Marie Brom

Nicolas Chanon

Caroline Collard

Anne-Catherine Lebihan

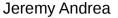

Laurent Gross

Benjamin Fuks

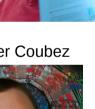
Jun Guo

Jean-Charles Fontaine

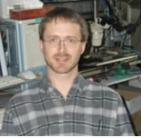
Eric Chabert



Xavier Coubez



Kirill Skovpen



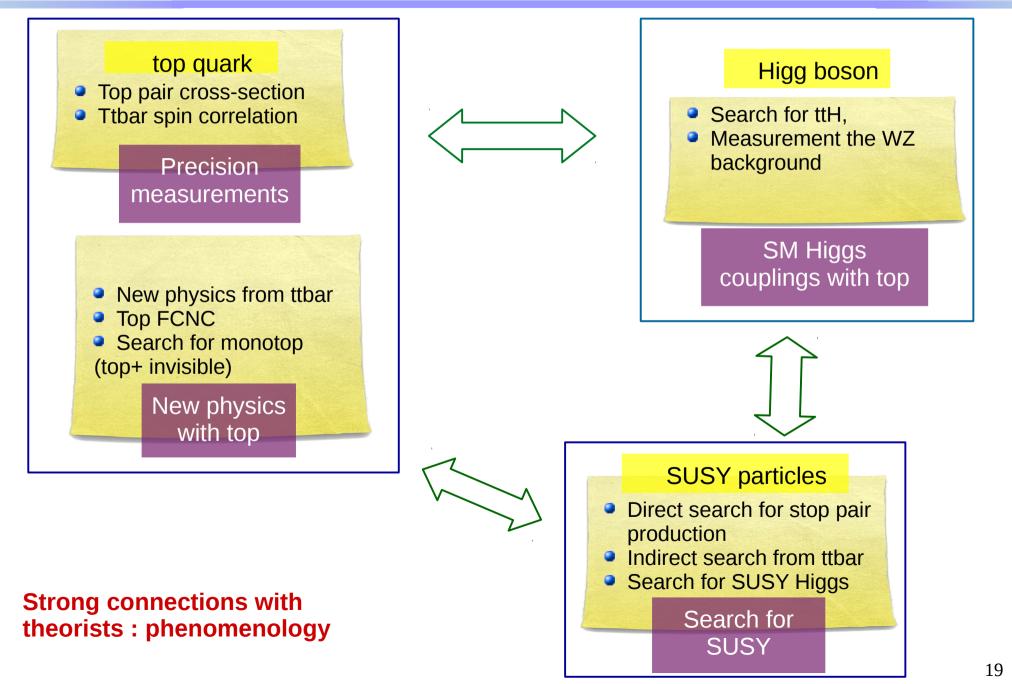
6 Professeurs, directeurs de recherche 8 Enseignants-chercheurs, chargés de recherche

- 3 PhD (+1 at CERN),
- + 5 ITAs !

Pierre Van Hove

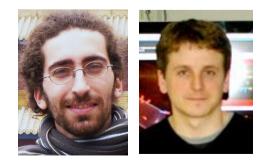
Jean-Laurent Agram Ulrich Goerlach

Denis Gelé


1 postdoc (+1 visitor in pheno),

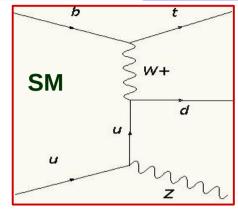
CMS@IPHC : Physics

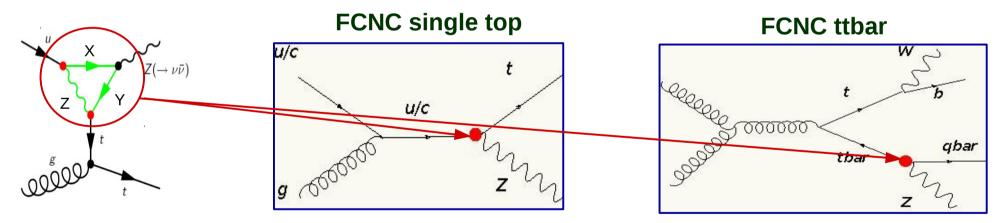
Intern-ships and PhD Thesis


Search for the associated production of a single-top quark and a Z or a H boson SuperSymmetry and the Higgs bosons(s): The Next to Minimal Super Symmetric Model (N-MSSM)

Associated production of a single top quark with a Z or H boson and search for new physics

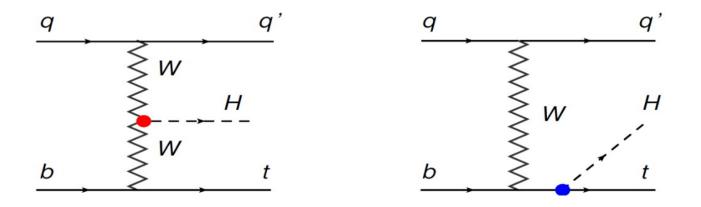
Nicolas Chanon (nicolas.pierre.chanon@cern.ch), Jeremy Andrea (jandrea@cern.ch)




Search for tZ(q) and tH(q)

- Intern-ship : search for the associated production of a top quark and a Z boson.
- Non-observed process, predicted by the SM.
- Accessible with the 13 TeV dataset.

• Important for the search for new physics : FCNC has similar experimental signatures.

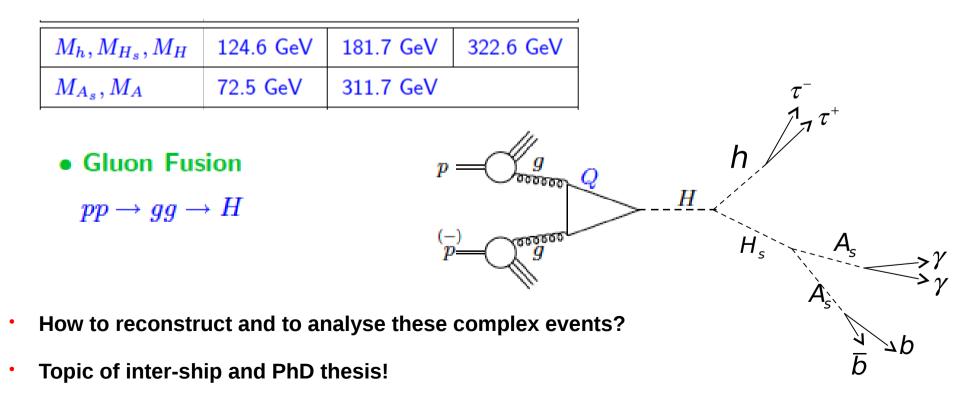

- Intern-ship :
 - Uses the 3 lepton channels,
 - Develop an event selection based on simulation,
 - Apply the event selection on 13 TeV data,
 - Estimation of backgrounds,
 - (Optional) Discrimination against dominant background : multivariate technique vs matrix element.22

Search for tZ(q) and tH(q)

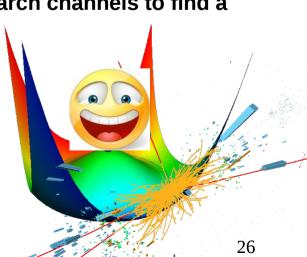
- PhD thesis : continuation of the tZ(q) analysis and extension to tH(q).
 - Important test of the top-quark couplings to the Higgs boson,
 - probe negative t-H Yukawas : large enhancement of the tHq cross-section,
 - Other possible enhancement from top-Higgs FCNC couplings,
 - Use 3 leptons and 2 same sign leptons, with multivariate technique and/or Matrix Element

- Instrumental aspects of the thesis :
 - Design and construction of the upgraded CMS for HL-LHC should start many years in advance,
 - Participate to the development of the new tracker,
 - Test the acquisition of new sensors with test-beam and perform the related analysis of data.

Search for supersymmetry in the Higgs sector


Ulrich Goerlach (ulrich.goerlach@iphc.cnrs.fr)

- All extensions of the SM have to contain at least one SM-like Higgs boson.
- The extended Higgs sector allows for new additional Higgs bosons: new particles to find.
- Higgs-Higgs couplings and decays $H \rightarrow h$, H_s and $H_s \rightarrow A_s$, A
- Depending on mass hierarchy, spectacular signatures like for example:



Stage (4 months)

- Introduction to SUSY, Higgs and N-MSSM
- Use programs NMSSMtools (mass spectra and branching ratios)
- Process with Pythia (decays and hadronisation) / DELPHES: detector simulation
- Analyse ntuples (Root) from simulated data with Madgraph and Mad_analysis
- Estimate the feasibility for some channels

PhD thesis (3 years)

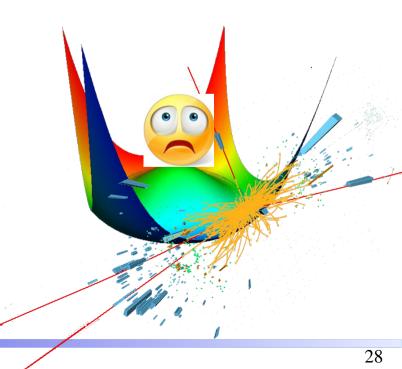
- Apply and further develop the analysis on data for different search channels to find a non-SM Higgs boson at the run 2 of the LHC
- Work on b-jet and tau id
- Discovery
 - Characterisation of new particle
 - MSSM or N-MSSM or ??
- Place a limit or rule out SUSY-models

Backups

Super Symmetry and the Higgs boson

- Super symmetry postulates a Super partner for each particle of the Standard model
- Fermions (lepton and quark) [□] [⊔] s-boson (slepton and squark)
- Boson (gamma, W, Z, gluons) ^{III} sfermion (photino, Wino, Bino, gluino)

Q|Boson, spin J> = |Fermion, spin J + $\frac{1}{2}$ >


Q|Fermion, spin J> = |Boson, spin J - $\frac{1}{2}$ >

- ・ Super symmetry is a "broken" symmetry ^書 look for heavy new sparticles
- Nothing found so far !!!!!

• LHC-RUN 2015:

UNIVERSITÉ DE STRASBOURG

Look for sparticles with even higher mass

Supermultiplets

Chiral Supermultiplet

Names		spin 0	spin $1/2$	$SU(3)_C, SU(2)_L, U(1)_Y$		
squarks, quarks Q		$(\widetilde{u}_L \ \widetilde{d}_L)$	$(u_L \ d_L)$	$(3, 2, \frac{1}{6})$		
$(\times 3 \text{ families})$ \overline{u}		\widetilde{u}_R^*	u_R^{\dagger}	$(\overline{3}, 1, -\frac{2}{3})$		
\overline{d}		\widetilde{d}_R^*	d_R^{\dagger}	$(\overline{3}, 1, \frac{1}{3})$		
sleptons, leptons L		$(\tilde{\nu} \ \tilde{e}_L)$	$(\nu \ e_L)$	$({f 1},{f 2},-{1\over 2})$		
$(\times 3 \text{ families})$	\overline{e}	\widetilde{e}_R^*	e_R^{\dagger}	(1, 1, 1)		
Higgs, higgsinos H_u		$(H^+_u \ H^0_u)$	$(\widetilde{H}^+_u\ \widetilde{H}^0_u)$	$({f 1},{f 2},+{1\over 2})$		
	H_d	$(H^0_d \ \ H^d)$	$(\widetilde{H}^0_d \ \ \widetilde{H}^d)$	$({f 1}, {f 2}, -{1\over 2})$		

 $\mathbf{V}_{\mathbf{L}}^{H_d}$ and H_u needed to give masses to down- and up-type fermions

Names	spin $1/2$	spin 1	$SU(3)_C, \ SU(2)_L, \ U(1)_Y$			
gluino, gluon	\widetilde{g}	g	(8, 1, 0)			
winos, W bosons	$\widetilde{W}^\pm \ \widetilde{W}^0$	$W^{\pm} W^0$	(1, 3, 0)			
bino, B boson	\widetilde{B}^0	B^0	(1, 1, 0)			

UNIVERSITÉ DE STRASBOURG

$\phi = \begin{pmatrix} \phi^+ & \frac{1}{2} \\ \phi^0 & \frac{1}{2} \end{pmatrix} SU(2) \text{ doublet, } \phi^+, \phi^0 \in \mathbb{W}; \quad \phi^+ = \frac{1}{\sqrt{2}} (\phi_1 + i\phi_2) \qquad \phi^0 = \frac{1}{\sqrt{2}} (\phi_3 + i\phi_4)$

• Standard

Model: Spontaneous symmetry breaking in SU(2) space. We can chose (local gauge invariance)

$$\phi_{0} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & \frac{1}{2} \\ V_{0} & \frac{1}{2} \end{pmatrix}; \phi_{1} = \phi_{2} = \phi_{4} = 0; \quad \phi(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & \frac{1}{2} \\ V_{0} + H(x) & \frac{1}{2} \end{pmatrix}; \quad \phi_{C}(x) = \frac{-1}{\sqrt{2}} \begin{pmatrix} V_{0} + H(x) & \frac{1}{2} \\ 0 & \frac{1}{2} \end{pmatrix}$$

• SUSY:

N

Yukawa coupling of ϕ and ϕ_c gives mass to down-type and up-type quarks, respectively

$$H_{u} = \begin{pmatrix} H_{u}^{+} & \vdots \\ H_{u}^{0} & \vdots \\ H_{u}^{0} & \vdots \end{pmatrix}; \quad H_{d} = \begin{pmatrix} H_{d}^{0} & \vdots \\ H_{d}^{-} & \vdots \\ H_{d}^{-} & \vdots \end{pmatrix}; \quad \text{two Isopsin doublet fields to give mass to} \qquad N-MSSM \\ \text{add. scalar field } S \\ \text{Coupling of Higgs superfields, Superpotential } W = \dots + \mu H_{u} \times H_{u} \ \mu \text{ free parameter, to be "fine" tuned} \end{cases}$$

N-MSSM, add scalar field *S*, $W = ... + \lambda S \times H_u \times H_u$; μ replaced by vacuum expectation value of *S*

	Simplest Higgs field		Next to simplest Higgs field	
MSSM :	h, H scalars	N-MSSM	$H_{1,} H_{2,} H_{3}$ scalars	new and complex
VISSIVI :	A pseudo scalar	\rightarrow	A_1, A_2 pseudo scalar	Higgs sector
	H^+ , H^- charged		H^+, H^- charged	

Benchmark $H_1 = h$ and $\tan \beta$ small

B.1 (Point ID Poi2a) Sce			enario				
M_h, M_{H_s}, M_H	124.6 0	ieV	181.7	GeV	322.6 GeV		
M_{A_s}, M_A	72.5 Ge	GeV 311.7 GeV					
$ S_{H_2h_s} ^2, P_{A_1a_s} ^2$	0.90	1					
$BR(A_s \to \gamma \gamma) = 0.84$, $BR(H_s \to A_s A_s)$	= 0.97	,	BR(H	$\rightarrow h$	$(H_s) = 0.51$		
$\sigma(ggH_s)BR(H_s\to A_sA_s\to b\bar{b}+b\bar{b})$	5.87 f	Ъ					
$\sigma(ggH_s)BR(H_s\to A_sA_s\to\gamma\gamma+b\bar{b})$	67.33 fb				[৸q-q		
$\sigma(ggH_s)BR(H_s \to A_sA_s \to \gamma\gamma + \gamma\gamma)$	193.22 fb				M.Mühlleitner arXiv:1408.1120v1 [hep-ph]		
$\sigma(ggH)BR(H\to hH_s\to h+A_sA_s\to bb+4\gamma)$			712.47 fb		08.112		
$\sigma(ggH) BR(H \to hH_s \to h + A_sA_s \to \gamma\gamma + 4b)$			248.02 fb		Kiv:14		
$\sigma(ggH)BR(H\to hH_s\to h+A_sA_s\to\tau\tau+4\gamma)$			74.60 fb		ner ar)		
$\sigma(ggH)BR(H\to hH_s\to h+A_sA_s\to\gamma\gamma+4\tau)$			2.47 fb		hlleitr		
$\sigma(ggH) BR(H o hH_s o h + A_sA_s o 6\gamma)$			2.69 fb		M.Mü		
$\sigma(ggH)BR(H\to hH_s\to h+A_sA_s\to\tau\tau+\gamma\gamma+b\bar{b})$			49.55 fb		31		
				-	5		

