Mixing angles for non-degenerate coupled systems in QFT

Quentin Duret
Laboratoire de Physique Théorique et Hautes Energies (Paris)

- Q. Duret \& B. Machet, Phys. Lett. B 643 (2006) 303-310, hep-ph/0606303.
- Q. Duret \& B. Machet, Phys. Lett. B 642 (2006) 469-471, hep-ph/0610148.

Introduction

Non-degenerate coupled systems :

- Bosons, such as binary systems of neutral kaons $K_{L}-K_{S}$
- Fermions in the standard model (coupled through non-diagonal Yukawa couplings in flavour space)

A fundamental feature :

In QFT, due to the mass differences between particles, mixing matrices of such systems should a priori never be considered as unitary
$\Longrightarrow \quad$ In the following approach, considering massive fermions in the SM :

- We parametrize mixing matrices as non-unitary
- We derive, through basic physical requirements, some significant results on the value of the mixing angles.

Two types of states:

Flavour eigenstates

$$
\begin{array}{cc}
\left(e_{f}^{-}, \mu_{f}^{-}, \nu_{e, f}, \nu_{\mu, f} \ldots\right) & \mathbf{V S}
\end{array}\left(e_{m}^{-}, \mu_{m}^{-}, \nu_{e, m}, \nu_{\mu, m} \ldots\right)
$$

gauge interaction eigenstates

Mass eigenstates
propagating eigenstates

In QFT the physical masses are the poles of the full renormalized propagator, i.e. the values of $z=q^{2}$ which satisfy

$$
\begin{equation*}
\operatorname{det} \Delta^{-1}(z)=0, \text { for } z=z_{i} \tag{1}
\end{equation*}
$$

The mass eigenstates are the corresponding eigenvectors :

$$
\begin{equation*}
\Delta^{-1}\left(z=z_{i}\right) \varphi_{m}^{i}=0 \tag{2}
\end{equation*}
$$

In terms of the renormalized quadratic lagrangian $L^{(2)}(z)=\Delta^{-1}(z)$:

$$
\begin{equation*}
\operatorname{det} L^{(2)}(z)=0 \quad L^{(2)}\left(z=z_{i}\right) \varphi_{m}^{i}=0 \tag{3}
\end{equation*}
$$

Why mixing matrices have no reasons to be unitary
The mixing matrices connect flavour eigenstates $\left(\Psi_{f}\right)$ to mass eigenstates $\left(\Psi_{m}\right)$:

$$
\begin{equation*}
\Psi_{f}=K \Psi_{m} . \tag{4}
\end{equation*}
$$

$L^{(2)}\left(z=q^{2}\right)$ hermitian
$\Longrightarrow \quad$ at each z, the eigenstates of $L^{(2)}(z)$ form an orthonormal basis $\Psi(z)$.

The mass eigenstates respectively belong to different orthonormal bases
$\Longrightarrow \quad$ they do no form themselves an orthonormal basis

If the flavour states form an orthonormal basis, the mixing matrix K cannot be unitary.

$$
\Psi_{f}=J \Psi_{m}, \quad \Psi_{f}=\left(\begin{array}{c}
\nu_{e, f} \tag{5}\\
\nu_{\mu, f} \\
e_{f}^{-} \\
\mu_{f}^{-}
\end{array}\right), \quad \Psi_{m}=\left(\begin{array}{c}
\nu_{e, m} \\
\nu_{\mu, m} \\
e_{m}^{-} \\
\mu_{m}^{-}
\end{array}\right), \quad J=\left(\begin{array}{c|c}
K_{\nu} & \\
\hline & K_{\ell}
\end{array}\right)
$$

- Parametrize the mixing matrices as non-unitary with two angles instead of one (preserving a unit norm for all states) :

$$
K_{\nu}=\left(\begin{array}{rr}
e^{i \alpha} c_{1} & e^{i \delta} s_{1} \tag{6}\\
-e^{i \beta} s_{2} & e^{i \gamma} c_{2}
\end{array}\right), \quad K_{\ell}=\left(\begin{array}{rr}
e^{i \theta} c_{3} & e^{i \zeta} s_{3} \\
-e^{i \chi} s_{4} & e^{i \omega} c_{4}
\end{array}\right)
$$

- \quad Neutral currents $\left(W_{\mu}^{3}\right) \quad \Longrightarrow \quad K_{\nu}^{\dagger} K_{\nu}, K_{l}^{\dagger} K_{l}$
- Two characteristics in flavour space : universality and absence of FCNC.
- If K unitary $\quad \Longrightarrow \quad$ automatically achieved in mass space too.
- If K non-unitary $\quad \Longrightarrow \quad$ no longer automatic.

Hence we impose I : universality of neutral currents, and II : absence of "FCNC" in the space of mass eigenstates (experimentally observed).

Given

$$
K_{\nu}^{\dagger} K_{\nu}=\left(\begin{array}{cc}
c_{1}^{2}+s_{2}^{2} & c_{1} s_{1} e^{i(\delta-\alpha)}-c_{2} s_{2} e^{i(\gamma-\beta)} \tag{7}\\
c_{1} s_{1} e^{i(\alpha-\delta)}-c_{2} s_{2} e^{i(\beta-\gamma)} & s_{1}^{2}+c_{2}^{2}
\end{array}\right)
$$

these constraints translate into :

- I : identity of diagonal elements : $c_{1}^{2}+s_{2}^{2}=c_{2}^{2}+s_{1}^{2}$
- II : vanishing of non-diagonal elements : $\quad c_{1} s_{1}=c_{2} s_{2} \quad$ or $\quad c_{1} s_{1}=-c_{2} s_{2}$.

Two sets of solutions arise :

- One-parameter ("Cabibbo-like") solutions : $\theta_{2}= \pm \theta_{1}+k \pi$ for which I and II coincide.
- Two-parameter solutions, for which I and II are independent.

They are of the form $\theta_{1}= \pm \frac{\pi}{4} ; \theta_{2}= \pm \theta_{1}+k \pi$, i.e. give rise to maximal mixing.

Mixing angles

Constraints given by the two conditions of universality and absence of FCNC's.

Getting the Cabibbo angle
Neighborhood of the Cabibbo case : $\theta_{2}= \pm \theta_{1}+\epsilon$
$\Longrightarrow K$ deviates from unitarity by $K^{\dagger} K=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)+\epsilon\left(\begin{array}{cc}\sin \left(2 \theta_{c}\right) & -a \cos \left(2 \theta_{c}\right) \\ -a^{*} \cos \left(2 \theta_{c}\right) & -\sin \left(2 \theta_{c}\right)\end{array}\right)$.

- Conditions I and II cannot any more be simultaneously fulfilled
- But I and II reduce to a single condition for a value of θ_{c} which turns out to be that of the Cabibbo angle experimentally measured.

$$
\tan \left(2 \theta_{c}\right)=\frac{1}{2} \quad \Longrightarrow \quad \cos \theta_{c}=0.9732
$$

For three generations, the same type of conditions leads to

- a configuration $(31.7,45,0)$ which matches quite well the mixing matrix measured at present for neutrinos
- an exact realization of the Quark-Lepton Complementarity

$$
\ldots ?
$$

