Marco Cirelli

(SPhT-CEA/Saclay \& INFN)

M.C.,
N.Fornengo (Turin, Italy) A.Strumia (Pisa, Italy)
hep-ph/0512090
Nucl. Phys. B753 (2006)

+ work in progress

Dark Matter is there. - galaxy rotation curves
 - clusters (lensing etc.)
 - cosmological fits (CMB+LSS+...)
 - alternatives have a hard time

What is Dark Matter?

- a WIMP has the correct relic abundance
- popular candidates: SuSy Neutralino, Kaluza-Klein DM, Little Higgs DM...

Ok, but... - "fine tuning"?

- DM stability?
- DM phenomenology?
is there something more "minimal"?

On top of the SM, add only one extra multiplet $\mathcal{X}=\left(\begin{array}{c}x_{1} \\ \chi_{2} \\ \vdots\end{array}\right)$

$$
\begin{array}{ll}
\mathscr{L}=\mathscr{L}_{S M}+\overline{\mathcal{X}}(i \not D+M) \mathcal{X} & \text { if } \mathcal{X} \text { is a fermion } \\
\mathscr{L}=\mathscr{L}_{\mathrm{SM}}+|D / \mathcal{X}|^{2}+M_{1}^{2}|\mathcal{X}|^{2} & \text { if } \mathcal{X} \text { is a scalar } \\
\text { gauge interactions } & \text { the only parameter, }
\end{array}
$$

and sistematically search for the ideal DM candidate...

The ideal DM candidate is

The ideal DM candidate is

$S U(2){ }_{L}$	$U(1)_{Y}$	spin
2		
$\underline{3}$		
4		
5		
$\underline{5}$		
7		

these are all possible choices:

$$
\begin{aligned}
& n \leq 5 \text { for fermions } \\
& n \leq 7 \text { for scalars }
\end{aligned}
$$

to avoid explosion in the running coupling

$$
\alpha_{2}^{-1}\left(E^{\prime}\right)=\alpha_{2}^{-1}(M)-\frac{b_{2}(n)}{2 \pi} \ln \frac{E^{\prime}}{M}
$$

The ideal DM candidate is

$S U(2){ }_{L}$	$U(1)_{Y}$	spin
2	1/2	
	0	
	1	
	1/2	
	3/2	
	0	
5	1	
	2	
7	0	

Wach multiplet contains a neutral component with a proper assignment of the hypercharge, according to

$$
\begin{gathered}
Q=T_{3}+Y=0 \\
\text { e.g. for } n=2: T_{3}=\binom{+\frac{1}{2}}{-\frac{1}{2}} \Rightarrow|Y|=\frac{1}{2} \\
\text { e.g. for } n=3: T_{3}=\left(\begin{array}{c}
+1 \\
0 \\
-1
\end{array}\right) \Rightarrow|Y|=0 \text { or } 1
\end{gathered}
$$

etc.

The ideal DM candidate is

$S U(2)_{L}$	$U(1)_{Y}$	spin
2	1/2	S
		F
$\underline{3}$	0	S
		F
	1	S
		F
4	1/2	S
		F
	3/2	S
		F
5	0	S
		F
	1	S
		F
	2	S
		F
7	0	S

Wach multiplet contains a neutral component with a proper assignment of the hypercharge, according to
$Q=T_{3}+Y \equiv 0$
e.g. for $n=2: T_{3}=\binom{+\frac{1}{2}}{-\frac{1}{2}} \Rightarrow|Y|=\frac{1}{2}$
e.g. for $n=3: T_{3}=\left(\begin{array}{c}+1 \\ 0 \\ -1\end{array}\right) \Rightarrow|Y|=0$ or 1
etc.

The ideal DM candidate is

$S U(2){ }_{L}$	$U(1)_{Y}$	spin	$M(\mathrm{TeV})$
2	1/2	S	0.43
		F	1.2
3	0	S	2.0
		F	2.6
	1	S	1.4
		F	1.8
4	1/2	S	2.4
		F	2.5
	3/2	S	2.4
		F	2.5
$\underline{5}$	0	S	5.0
		F	4.5
	1	S	3.5
		F	3.2
	2	S	3.5
		F	3.2
7	0	S	8.5

The mass M is determined by the relic abundance:

$$
\Omega_{\mathrm{DM}}=\frac{610^{-27} \mathrm{~cm}^{3} \mathrm{~s}^{-1}}{\left\langle\sigma_{\mathrm{ann}} v\right\rangle} \cong 0.24
$$

for \mathcal{X} scalar

$$
\left\langle\sigma_{\mathrm{ann}} v\right\rangle \simeq \frac{g_{2}^{4}\left(3-4 n^{2}+n^{4}\right)+16 Y^{4} g_{Y}^{4}}{64 \pi M^{2} g_{\mathcal{X}}}
$$

for \mathcal{X} fermion

$$
\left\langle\sigma_{\mathrm{ann}} v\right\rangle \simeq \frac{g_{2}^{4}\left(n^{4}+11 n^{2}-12\right)+8 Y^{2} g_{Y}^{4}\left(11+2 Y^{2}\right)}{64 \pi M^{2} g_{\mathcal{X}}}
$$

(- include co-annihilations)
(- computed for $M \gg M_{Z, W}$)

The ideal DM candidate is

$S U(2)_{I}$	$U(1)_{Y}$	spin	$M(\mathrm{TeV})$	$\Delta M(\mathrm{MeV})$	EW loops induce
$\underline{2}$	$1 / 2$	S	0.43	348	a mass splitting ΔM inside the n-uplet:
		F	1.2	342	
$\underline{3}$	0	S	2.0	166	
		F	2.6	166	$\text { Mrus }^{W, Z, \gamma}$
	1	S	1.4	540	
		F	1.8	526	$x>x$
4	1/2	S	2.4	353	
		F	2.5	347	$\begin{aligned} & M_{Q}-M_{Q^{\prime}}=\frac{\sigma_{Q} M}{4}\left\{\left(Q^{2}-Q^{\prime 2}\right) s_{W}^{2} f\left(\frac{M_{z}}{N}\right)\right. \\ &+\left(Q-Q^{\prime}\right)\left(Q+Q^{\prime}-2 Y\right)\left[f\left(\frac{M_{W}}{M}\right)-f\left(\frac{M_{z}}{M}\right)\right] \\ & \text { with } f(r) \xrightarrow{r \rightarrow 0}-2 \pi r \end{aligned}$
	3/2	S	2.4	729	
		F	2.5	712	
5	0	S	5.0	166	
		F	4.5	166	The neutral component is the lightest
	1	S	3.5	537	
		F	3.2	534	
	2	S	3.5	906	DM ${ }^{+}$
		F	3.2	900	Δ
7	0	S	8.5	166	$\mathrm{DM}^{0} \xrightarrow{\square}$

The ideal DM candidate is
weakly in linal, stable

$S U(2)_{L}$	$U(1)_{Y}$	spin	$M(\mathrm{TeV})$	$\Delta M(\mathrm{MeV})$	decay ch.	List all allowed SM couplings:
$\underline{2}$	1/2	S	0.43	348	EL	1/2-1 1/2
		F	1.2	342	$E H \leftarrow$	e.g. $\mathcal{X} E H$
$\underline{3}$	0	S	2.0	166	$H H^{*}$	$\underline{1}$
		F	2.6	166	LH	$\mathcal{X} .$
	1	S	1.4	540	$H H, L H$	$\cdots \cdots h$
		F	1.8	526	LH	
$\underline{4}$	1/2	S	2.4	353	$H H H^{*}$	1/2-1/2 1/2-1/2
		F	2.5	347	$\left(L H H^{*}\right) \leftarrow$	e.g. $\mathcal{X} L H H^{*}$
	3/2	S	2.4	729	$H H H$	$\stackrel{2}{2} \quad \stackrel{2}{2} \quad \underline{2} \quad \underline{2}$
		F	2.5	712	(LHH)	dim=5 operator, induces
$\underline{5}$	0	S	5.0	166	$\left(H H H^{*} H^{*}\right)$	
		F	4.5	166	-	for $\Lambda \sim M_{\text {Pl }}$
	1	S	3.5	537	$\left(H H^{*} H^{*} H^{*}\right)$	
		F	3.2	534	-	
	2	S	3.5	906	$\left(H^{*} H^{*} H^{*} H^{*}\right)$	
		F	3.2	900	-	
7	0	S	8.5	166	-	

weakly in

$S U(2)_{L}$	$U(1)_{Y}$	spin	$M(\mathrm{TeV})$	$\Delta M(\mathrm{MeV})$	decay ch.	List all allowed SM couplings:
$\underline{2}$	1/2	S	0.43	348	EL	1/2-1 1/2
		F	1.2	342	$E H \leftarrow$	e.g. $\mathcal{X} E H$
$\underline{3}$	0	S	2.0	166	$H H^{*}$	$\underline{1} 2$
		F	2.6	166	LH	$\mathcal{X} .$
	1	S	1.4	540	$H H, L H$	- h
		F	1.8	526	LH	
$\underline{4}$	1/2	S	2.4	353	$H H H^{*}$	1/2-1/2 1/2-1/2
		F	2.5	347	$\left(L H H^{*}\right) \leftarrow$	- e.g. $\mathcal{X} L H H^{*}$
	3/2	S	2.4	729	$H H H$	$\begin{array}{llll} 2 & \underline{2} & \underline{2} \end{array}$
		F	2.5	712	(LHH)	dim=5 operator, induces
$\underline{5}$	0	S	5.0	166	$\left(H H H^{*} H^{*}\right)$	
		F	4.5	166	-	for $\mathrm{A} \sim \mathrm{M}_{\mathrm{Pl}}$
	1	S	3.5	537	$\left(H H^{*} H^{*} H^{*}\right)$	
		F	3.2	534	-	No allowed decay!
	2	S	3.5	906	$\left(H^{*} H^{*} H^{*} H^{*}\right)$	Automatically
		F	3.2	900	-	
7	0	S	8.5	166	-	

The ideal DM candidate is

$S U(2)_{L}$	$U(1)_{Y}$	spin	$M(\mathrm{TeV})$	$\Delta M(\mathrm{MeV})$	decay ch.
$\underline{2}$	1/2	S	0.43	348	EL
		F	1.2	342	EH
$\underline{3}$	0	S	2.0	166	$H H^{*}$
		F	2.6	166	LH
	1	S	1.4	540	$H H, L H$
		F	1.8	526	LH
$\underline{4}$	1/2	S	2.4	353	$H H H^{*}$
		F	2.5	347	$\left(L H H^{*}\right)$
	$3 / 2$	S	2.4	729	$H H H$
		F	2.5	712	(LHH)
5	0	S	5.0	166	$\left(H H H^{*} H^{*}\right)$
		F	4.5	166	-
	1	S	3.5	537	$\left(H H^{*} H^{*} H^{*}\right)$
		F	3.2	534	-
	2	S	3.5	906	$\left(H^{*} H^{*} H^{*} H^{*}\right)$
		F	3.2	900	-
7	0	S	8.5	166	-

The ideal DM candidate is

$S U(2)_{L}$	$U(1)_{Y}$	spin	$M(\mathrm{TeV})$	$\Delta M(\mathrm{MeV})$	decay ch.
$\underline{2}$	1/2	S	0.43	348	EL
		F	1.2	342	EH
$\underline{3}$	0	S	2.0	166	$H H^{*}$
		F	2.6	166	LH
	1	S	1.4	540	$H H, L H$
		F	1.8	526	LH
$\underline{4}$	1/2	S	2.4	353	$H H H^{*}$
		F	2.5	347	$\left(L H H^{*}\right)$
	$3 / 2$	S	2.4	729	$H H H$
		F	2.5	712	(LHH)
5	0	S	5.0	166	$\left(H H H^{*} H^{*}\right)$
		F	4.5	166	-
	1	S	3.5	537	$\left(H H^{*} H^{*} H^{*}\right)$
		F	3.2	534	-
	2	S	3.5	906	$\left(H^{*} H^{*} H^{*} H^{*}\right)$
		F	3.2	900	-
7	0	S	8.5	166	-

$$
\begin{array}{r}
\sigma \simeq G_{F}^{2} M_{\mathcal{N}}^{2} Y^{2} \\
>\text { present bounds } \\
\text { e.g. CDMS } \\
\text { need } Y=0
\end{array}
$$

The ideal DM candidate is

$S U(2)_{L}$	$U(1)_{Y}$	spin	$M(\mathrm{TeV})$	$\Delta M(\mathrm{MeV})$	decay ch.
$\underline{2}$	1/2	S	0.43	348	EL
		F	1.2	342	EH
$\underline{3}$	0	S	2.0	166	$H H^{*}$
		F	2.6	166	LH
	1	S	1.4	540	$H H, L H$
		F	1.8	526	LH
$\underline{4}$	1/2	S	2.4	353	$H H H^{*}$
		F	2.5	347	$\left(L H H^{*}\right)$
	$3 / 2$	S	2.4	729	$H H H$
		F	2.5	712	(LHH)
5	0	S	5.0	166	$\left(H H H^{*} H^{*}\right)$
		F	4.5	166	-
	1	S	3.5	537	$\left(H H^{*} H^{*} H^{*}\right)$
		F	3.2	534	-
	2	S	3.5	906	$\left(H^{*} H^{*} H^{*} H^{*}\right)$
		F	3.2	900	-
7	0	S	8.5	166	-

The ideal DM candidate is
weakly int cral, stable

$S U(2)_{L}$	$U(1)_{Y}$	spin	$M(\mathrm{TeV})$	$\Delta M(\mathrm{MeV})$	decay ch.
2	1/2	5	0.43	348	EL
		F	1.2	342	EH
$\underline{3}$	0	S	2.0	166	$H H^{*}$
		F	2.6	166	$L H$
	1	\bar{S}	1.4	540	HH,LH
		F	1.8	526	LH
$\underline{4}$	1/2	S	2.4	353	$H H H^{*}$
		F	2.5	347	$\left(L H H^{*}\right)$
	$3 / 2$	S	2.4	729	HHH
		F	2.5	712	(LHH)
$\underline{5}$	0	S	5.0	166	$\left(H H H^{*} H^{*}\right)$
		F	4.5	166	-
	1	S	3.5	537	$\left(H H^{*} H^{*} H^{*}\right)$
		F	3.2	534	-
	2	S	3.5	906	$\left(H^{*} H^{*} H^{*} H^{*}\right)$
		F	3.2	900	-
7	0	S	8.5	166	-

The ideal DM candidate is
weakly

$S U(2)_{L}$	$U(1)_{Y}$	spin	$M(\mathrm{TeV})$	$\Delta M(\mathrm{MeV})$	decay ch.
2	1/2	S	0.43	348	EL
		F	1.2	342	EH
$\underline{3}$	0	S	2.0	166	$H H^{*}$
		F	2.6	166	LH
	1	S	1.4	540	HH.LH
		F	1.8	526	LH
$\underline{4}$	1/2	S	2.4	353	$H H H^{*}$
		F	2.5	347	(LHH*)
	$3 / 2$	S	2.4	729	HHH
		F	2.5	712	(LHH)
$\underline{5}$	0	S	5.0	166	$\left(H H H^{*} H^{*}\right)$
		F	4.5	166	-
	1	S	3.5	537	HH* $H^{*} H^{*}$
		F	3.2	534	-
	2	S	3.5	906	$\left(H^{*} H^{*} H^{*} H^{*}\right.$
		F	3.2	900	-
$\underline{7}$	0	S	8.5	166	-

The ideal DM candidate is
weakly

$S U(2)_{L}$	$U(1)_{Y}$	spin	$M(\mathrm{TeV})$	$\Delta M(\mathrm{MeV})$	decay ch.
2	1/2	S	0.43	348	EL
		F	1.2	342	EH
3	0	S	2.0	166	$H H^{*}$
		F	2.6	166	LH
	1	S	$\frac{2.6}{1.4}$	$\frac{1660}{}$	HH,LH
		F	1.8	526	LH
$\underline{4}$	$1 / 2$	S	2.4	353	HHH*
		F	2.5	347	$\left(L H H^{*}\right)$
	$3 / 2$	S	2.4	729	HHH
		F	2.5	712	(LHH)
$\underline{5}$	0	S	5.0	166	$\left(H H H^{*} H^{*}\right)$
		F	4.5	166	-
	1	S	3.5	537	$\left(H H^{*} H^{*} H^{*}\right)$
		F	3.2	534	-
	2	S	3.5	906	$\left(H^{*} H^{*} H^{*} H^{*}\right)$
		F	3.2	900	-
7	0	S	8.5	166	-

We have a winner!

A fermionic $S U(2)_{L}$ quintuplet with $Y=0$ provides a DM candidate with $M=4.5 \mathrm{TeV}$, which is fully successful:

- neutral
- automatically stable like proton not yet discovered by DM searches.

A scalar $S U(2)_{L}$ eptaplet with $Y=0$ also does.
(Other candidates can be cured via non-minimalities.)

production at colliders

from annihil in galactic hall or center (line + continuum)

EGRET, WMAP
from annihil in galactic halo or center HEAT
from annihil in galactic halo or center
from annihil in galactic halo or center
$\nu, \bar{\nu}$ from annihil in massive bodies in neutrino telescopes

one-loop processes

$$
\mathscr{L}_{\mathrm{eff}}^{W}=\left(n^{2}-(1-2 Y)^{2}\right) \frac{\pi \alpha_{2}^{2}}{16 M_{W}} \sum_{q}\left[\left(\frac{1}{M_{W}^{2}}+\frac{1}{m_{h}^{2}}\right)[\overline{\mathcal{X}} \mathcal{X}] m_{q}[\bar{q} q]-\frac{2}{3 M}\left[\overline{\mathcal{X}} \gamma_{\mu} \gamma_{5} \mathcal{X}\right]\left[\bar{\gamma} \gamma_{\mu} \gamma_{5} q\right]\right]
$$

larger for higher n

Spin-Independent

$$
\propto \frac{m_{q}}{M_{W}^{3}}
$$

$$
\langle N| \sum_{q} m_{q} \bar{q} q|N\rangle \equiv f m_{N}\left(f \simeq \frac{1}{3}\right)
$$

Spin-Dependent
$\propto \frac{1}{M M_{W}}$

(NB: no free parameters => one predicted point per candidate)

The DM problem requires physics beyond the SM.
Introducing the minimal amount of it, we find a few fully successful DM candidates: massive, neutral, automatically stable.

The "best" is the

fermionic $S U(2)_{L}$ quintuplet with $Y=0$. ($M=4.5 \mathrm{TeV}$)

Its phenomenology is precisely computable:

- can be found in next gen direct detection exp's,
- could give signals in indirect detection exp's,
- too heavy to be produced at LHC.
(Other candidates have different properties.)

Back-up slides

Non-Minima ms in scalar case

Quadratic and quartic terms in \mathcal{X} and H :

$$
\lambda_{H}\left(\mathcal{X}^{*} T_{\mathcal{X}}^{a} \mathcal{X}\right)\left(H^{*} T_{H}^{a} H\right)+\lambda_{H}^{\prime}|\mathcal{X}|^{2}|H|^{2}+\frac{\lambda_{\mathcal{X}}}{2}\left(\mathcal{X}^{*} T_{\mathcal{X}}^{a} \mathcal{X}\right)^{2}+\frac{\lambda_{\mathcal{X}}^{\prime}}{2}|\mathcal{X}|^{4}
$$

- do not induce decays (even number of \mathcal{X}, and $\langle\mathcal{X}\rangle=0$)
- [3] and [4] do not give mass terms
- after EWSB, [2] gives a common mass $\sqrt{\lambda_{H}^{\prime}} v \approx \mathcal{O}(\lesssim 100 \mathrm{GeV})$ to all \mathcal{X}_{i} components; negligible for $M=\mathcal{O}(\mathrm{TeV})$
- after BWSB, [1] gives mass splitting $\Delta M_{\text {tree }}=\frac{\lambda_{H} v^{2}\left|\Delta T_{X}^{3}\right|}{4 M}=\lambda_{H} \cdot 7.6 \mathrm{GeV} \frac{\mathrm{TeV}}{M}$ between \mathcal{X}_{i} components; assume $\lambda_{H} \lesssim 0.01$ so that $\Delta M_{\text {tree }} \ll \Delta M$
(Anyway, scalar MDM is less interesting.)

If you
$Y \neq 0$: introduce some mechanism to forbid coupling with Z^{0} anyway
e.g. mixing with an extra singlet splits the 2 components of \mathcal{X}; if splitting is large enough, NC scattering is kinematically forbidden...

stability: impose some symmetry to forbid decays (e.g. R-parity)...
...the case of SuSy higgsino

$$
\hat{\sigma}_{u \bar{d}}=\frac{g_{\mathcal{X}} g_{2}^{4}\left(n^{2}-1\right)}{13824 \pi \hat{s}} \beta \cdot \begin{cases}\beta^{2} & \text { if } \mathcal{X} \text { is a fermion } \\ 3-\beta^{2} & \text { if } \mathcal{X} \text { is a scalar }\end{cases}
$$

(similarly $\left.\hat{\sigma}_{u \bar{u}}, \hat{\sigma}_{d \bar{d}}, \hat{\sigma}_{d \bar{u}}\right) \quad \beta=\sqrt{1-4 M^{2} / \hat{s}}$
Large production for small M.
$2 \times$ LHC to produce heavy candidates.

A clean signature:

$$
\left.\begin{array}{lll}
\mathcal{X}^{ \pm} \rightarrow \mathcal{X}^{0} \pi^{ \pm} & : & \Gamma_{\pi}=\left(n^{2}-1\right) \frac{G_{\mathrm{F}}^{2} V_{u d}^{2} \Delta M^{3} f_{\pi}^{2}}{4 \pi} \sqrt{1-\frac{m_{\pi}^{2}}{\Delta M^{2}},} \\
\mathcal{X}^{ \pm} \rightarrow \mathcal{X}^{0} e^{ \pm\left(\bar{\nu}_{e}\right)} & : & \Gamma_{e}=\left(n^{2}-1\right) \frac{G_{\mathrm{F}}^{2} \Delta M^{5}}{60 \pi^{3}}
\end{array} \quad \mathrm{BR}_{e}=2.05 \%\right)
$$

Events at LHC $\int \mathcal{L} d t=100 / \mathrm{fb}$ $(0.7 \div 2) \cdot 10^{3}$ $120 \div 260$ $0.2 \div 1.0$ $0.4 \div 2.2$ $11 \div 33$ $26 \div 80$ $0.1 \div 0.7$ $3.6 \div 18$ $0.1 \div 0.6$ $2.7 \div 14$ $\ll 1$ $\ll 1$ $\ll 1$

$\tau \simeq 44 \mathrm{~cm} /\left(n^{2}-1\right)$

Can one have CC DM interactions? (tree level!)

Need to provide $\Delta M=M_{\mathcal{X}}-M_{\mathcal{X}}=166 \mathrm{MeV}$
Accelerate nuclei and
 use DM as diffuse target.

$$
\begin{array}{r}
\hat{\sigma}\left(a \mathcal{X} \rightarrow a^{\prime} \mathcal{X}^{ \pm}\right)=\sigma_{0} \frac{n^{2}-1}{4}\left[1-\frac{\ln \left(1+4 E^{2} / M_{W}^{2}\right)}{4 E^{2} / M_{W}^{2}}\right] \\
\sigma_{0}=\frac{G_{\mathrm{F}}^{2} M_{W}^{2}}{\pi}=1.110^{-34} \mathrm{~cm}^{2}
\end{array}
$$

$$
\frac{d N}{d t}=\varepsilon N_{p} \sigma \frac{\rho_{\mathrm{DM}}}{M}=\varepsilon \frac{10}{\mathrm{year}} \frac{N_{p}}{10^{20}} \frac{\rho_{\mathrm{DM}}}{0.3 \mathrm{GeV} / \mathrm{cm}^{3}} \frac{\mathrm{TeV}}{M} \frac{\sigma}{3 \sigma_{0}}
$$

number of targets
number of bullets
"efficiency"
not
unreasonable?
tagging $\mathcal{X}^{+} \ldots$
i.e. $\nu, \bar{p}, e^{-}, \gamma, D$ from MDM annihilations in halo or body. Signal in ν : promising at neutrino telescopes

Enhanced cross section in vector bosons due to resummed diagrams when Non-Relativistic $\overline{\mathcal{X}} \mathcal{X}$ are a "bound state":

$$
\begin{aligned}
& \alpha_{2} M_{W} \sim \Delta M \approx E_{B} \sim \alpha_{2}^{2} M
\end{aligned}
$$

Hisano et al., 2004,
Hisano et al., 2005

resonances match M for $n=\underline{3}$ Signal in \bar{p}, e^{+}, γ : promising if enhanced

SplitSuSy-like

- mainly Higgsino (a fermion doublet)
- + something else (a singlet)
- stabilization by R-parity
- want unification also
- unification scale is low, need to embed in 5D to avoid proton decay

Mahbubani, Senatore 2005

MDM

arbitrary multiplet, scalar or fermion

- nothing else (with $\mathrm{Y}=0$)
- automatically stable
- forget unification, it's SM
- nothing

Common feature: the focus is on DM, not on SM hierarchy problem.

