

Minimal Dark Matter

Marco Cirelli (SPhT-CEA/Saclay & INFN)

M.C., N.Fornengo (Turin, Italy) A.Strumia (Pisa, Italy)

hep-ph/0512090 Nucl. Phys. B753 (2006) + work in progress

Dark Matter today

Dark Matter is there.

- galaxy rotation curves

- clusters (lensing etc.)
- cosmological fits (CMB+LSS+...)
- alternatives have a hard time

What is Dark Matter?

 a WIMP has the correct relic abundance
 popular candidates: SuSy Neutralino, Kaluza-Klein DM, Little Higgs DM...

Ok, but...

- "fine tuning"?
- DM stability?
- DM phenomenology?

is there something more "minimal"?

Minimalistic approach

 $\mathcal{L} = \mathcal{L}_{\rm SM} + \bar{\mathcal{X}}(i\mathcal{D} + M)\mathcal{X}$ $\mathcal{L} = \mathcal{L}_{\rm SM} + |D/\mu\mathcal{X}|^2 + M^2|\mathcal{X}|^2$

if \mathcal{X} is a fermion

if ${\mathcal X}$ is a scalar

gauge interactions

the only parameter, and will be fixed by $\Omega_{\rm DM}.$

other terms in the scalar potential)

and sistematically search for the ideal DM candidate...

The ideal DM candidate is weakly int., massive, neutral, stable

The ideal DM candidate is

these are all possible choices: $n \leq 5$ for fermions $n \leq 7$ for scalars to avoid explosion in the running coupling $\alpha_2^{-1}(E') = \alpha_2^{-1}(M) - \frac{b_2(n)}{2\pi} \ln \frac{E'}{M}$

 $(\underline{6} \text{ is similar to } \underline{4})$

weakly int.,

The ideal DM candidate is L., massive, neutral, stabl

Each multiplet contains a neutral component with a proper assignment of the hypercharge, according to

$$Q = T_3 + Y \equiv 0$$

e.g. for
$$n = 2$$
: $T_3 = \begin{pmatrix} +\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} \Rightarrow |Y| = \frac{1}{2}$

e.g. for n = 3: $T_3 = \begin{pmatrix} +1 \\ 0 \\ -1 \end{pmatrix} \Rightarrow |Y| = 0 \text{ or } 1$

etc.

The ideal weakly int., mas

DM	can	didate	is	
			eal, s	

$SU(2)_L$	$U(1)_Y$	spin
9	1/9	S
<u>2</u>	1/2	F
	0	S
9	U	F
<u>3</u>	1	S
	1	F
	1/9	S
4	1/2	F
<u>4</u>	2/9	S
	3/2	F
	0	S
	0	F
	1	S
<u>5</u>	1	F
	0	$\begin{array}{c}S\\F\\S\\F\\S\end{array}$
	2	F
<u>7</u>	0	S

Each multiplet contains a neutral component with a proper assignment of the hypercharge, according to

$$Q = T_3 + Y \equiv 0$$

e.g. for
$$n = 2$$
: $T_3 = \begin{pmatrix} +\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} \Rightarrow |Y| = \frac{1}{2}$

e.g. for n = 3: $T_3 = \begin{pmatrix} +1 \\ 0 \\ -1 \end{pmatrix} \Rightarrow |Y| = 0 \text{ or } 1$

etc.

The ideal DM candidate is weakly int., massive, neutral, stabl

$SU(2)_L$	$U(1)_Y$	spin	M (TeV)
9	1/2	S	0.43
<u>2</u>		F	1.2
	0	S	2.0
2	0	F	2.6
<u>3</u>	1	S	1.4
		F	1.8
	1/2	S	2.4
1	1/2	F	2.5
<u>4</u>	2/9	S	2.4
	3/2	F	2.5
	0	S	5.0
	0	F	4.5
	1	S	3.5
<u>5</u>	1	F	3.2
	0	S	3.5
	2	F	3.2
<u>7</u>	0	S	8.5

The mass M is determined by the relic abundance: $\Omega_{\rm DM} = \frac{6 \ 10^{-27} {\rm cm}^3 {\rm s}^{-1}}{\langle \sigma_{\rm ann} v \rangle} \cong 0.24$

$$\langle \sigma_{\mathrm{ann}} v \rangle \simeq \frac{g_2^4 (n^4 + 11n^2 - 12) + 8Y^2 g_Y^4 (11 + 2Y^2)}{64\pi M^2 g_X}$$

$$\begin{array}{c} \mathcal{X} & & \mathcal{N} & \mathcal{N} \\ \mathcal{X} & &$$

(- include co-annihilations) (- computed for $M \gg M_{Z,W}$)

					andidate is
Wea	akly				e, neutral, stable
$SU(2)_L$	$U(1)_Y$	spin	$M ({ m TeV})$	$\Delta M({ m MeV})$	EW loops induce
9	1/2	S	0.43	348	a mass splitting ΔM
<u>2</u>	1/2	F	1.2	342	inside the n-uplet:
	0	S	2.0	166	TIPICE ME H-abien.
9	U	F	2.6	166	W, Z, γ
<u>3</u>	1	S	1.4	540	N
	1	F	1.8	526	$\chi \rightarrow \chi$
	1/2	S	2.4	353	
1		F	2.5	347	$M_Q - M_{Q'} = \frac{\alpha_2 M}{4\pi} \left\{ (Q^2 - Q'^2) s_W^2 f(\frac{M_Z}{M}) \right\}$
4	3/2	S	2.4	729	$+ (Q - Q')(Q + Q' - 2Y) \left f(\frac{M_W}{M}) - f(\frac{M_Z}{M}) \right $
	5/2	F	2.5	712	$\begin{split} M_Q - M_{Q'} &= \frac{\alpha_2 M}{4\pi} \left\{ (Q^2 - Q'^2) s_W^2 f(\frac{M_Z}{M}) \right. \\ &+ (Q - Q')(Q + Q' - 2Y) \left[f(\frac{M_W}{M}) - f(\frac{M_Z}{M}) \right] \\ \text{with} f(r) \xrightarrow{r \to 0} -2\pi r \end{split}$
	0	S	5.0	166	
	0	F	4.5	166	
-	1	S	3.5	537	The neutral component
<u>5</u>	1	F	3.2	534	is the lightest
	2	S	3.5	906	$ DM^+$
		F	3.2	900	
<u>7</u>	0	S	8.5	166	DM^0

7

The ideal DM candidate is									
wea	akly			tral, stable					
$SU(2)_L$	$U(1)_Y$	spin	$M ({ m TeV})$	$\Delta M({ m MeV})$	decay ch.	List all allowed SM couplings:			
<u>2</u>	1/2	S	$\begin{array}{c} 0.43 \\ 1.2 \end{array}$	$\begin{array}{c} 348\\ 342 \end{array}$	EL	1/2 - 1 1/2			
		F	1.2 2.0	$\frac{542}{166}$	$EH \leftarrow HH^*$	-e.g. $\begin{array}{cc} \mathcal{X}EH \\ rac{2}{2} & rac{1}{2} \end{array}$			
9	0	\overline{F}	2.6	166	LH	<i>X</i>			
<u>3</u>	1	S	1.4	540	HH, LH	` h			
		F	1.8	526					
	1/2	S	2.4	353	HHH^*	- e.g. $\overset{1/2-1/2}{\mathcal{X}LHH}^{*}$			
4		F	2.5	347	$(LHH^*) \leftarrow$	$- e.g. \mathcal{X} L H H^{-1}$ $\frac{2}{2} \frac{2}{2} \frac{2}{2} \frac{2}{2}$			
	3/2	S	2.4	729	HHH	dim=5 operator, induces			
		F	2.5	712	(LHH)	$\tau \sim \Lambda^2 \text{TeV}^{-3} \ll t_{\text{universe}}$			
	0	S	5.0	166	(HHH^*H^*)	for $\Lambda \sim M_{ m Pl}$			
		F	4.5	166	([] [] * [] * [] *]				
<u>5</u>	1	S	3.5	537	$(HH^*H^*H^*)$				
		F	3.2 2 E	534	$(H^*H^*H^*H^*)$				
	2	S	3.5	906					
7		F	3.2	900					
<u>7</u>	0	S	8.5	166					

The ideal DM candidate is weakly int., massive, neutral, stable $\Delta M(\text{MeV})$ decay ch. $SU(2)_L$ List all allowed SM couplings: (TeV) $U(1)_{Y}$ spin 0.43348 ELS $1/2 - 1 \ 1/2$ 1/22 1.2 342 FEH \leftrightarrow e.g. $\mathcal{X}EH$ 166 2.0S HH^* 0 *x*_____*h* 2.6 LH166F3 S HH, LH1.4 5401 1.8 F526 LH2.4 S353 HHH^* 1/2 - 1/2 1/2 - 1/21/2 $(LHH^*) \leftarrow e.g. \quad \mathcal{X}LHH^*$ 347 2.5F4 S2.4729 HHH3/2dim=5 operator, induces F2.5712 (LHH) $\tau \sim \Lambda^2 \text{TeV}^{-3} \ll t_{\text{universe}}$ (HHH^*H^*) S5.01660 for $\Lambda \sim M_{\rm Pl}$ 4.5F166 $(HH^*H^*H^*$ 3.5 S537 1 No allowed decay! 5 F3.2 534Automatically $(H^*H^*H^*H^*$ 906 S3.5 stable! 2 3.2 F900 0 S 8.5 166

The ideal DM candidate is								
wea	akly					tral, stable		
$SU(2)_L$	$U(1)_Y$	spin	$M ({\rm TeV})$	$\Delta M({ m MeV})$	decay ch.	and		
<u>2</u>	1/2	S	0.43	348	EL	not excluded		
<u></u>	1/2	F	1.2	342	EH	by direct searches!		
	0	S	2.0	166	HH^*			
2	0	F	2.6	166	LH			
<u>3</u>	1	S	1.4	540	HH,LH			
	1	F	1.8	526	LH			
	1/2	S	2.4	353	HHH^*			
4	1/2	F	2.5	347	(LHH^*)			
4	3/2	S	2.4	729	HHH			
	0/2	F	2.5	712	(LHH)			
	0	S	5.0	166	(HHH^*H^*)			
	0	F	4.5	166				
	1	S	3.5	537	$(HH^*H^*H^*)$			
<u>5</u>		F	3.2	534				
	2	S	3.5	906	$(H^*H^*H^*H^*)$			
		F	3.2	900				
<u>7</u>	0	S	8.5	166				

The ideal DM candidate is								
Wea	akly					itral, stable		
$SU(2)_L$	$U(1)_Y$	spin	M (TeV)	$\Delta M({ m MeV})$	decay ch.	and		
9	1/2	S	0.43	348	EL	not excluded		
<u>2</u>	1/2	F	1.2	342	EH	by direct searches!		
	0	S	2.0	166	HH^*			
2	0	F	2.6	166	LH	Candidates with $Y \neq 0$		
<u>3</u>	1	S	1.4	540	HH, LH	interact as		
	1	F	1.8	526	LH	$\dot{\chi}$		
	1/2	S	2.4	353	HHH^*	A the second t		
1	1/2	F	2.5	347	(LHH^*)	$\leq Z^0$		
<u>4</u>	3/2	S	2.4	729	HHH			
	5/2	F	2.5	712	(LHH)			
	0	S	5.0	166	(HHH^*H^*)	$-2 \sqrt{2} \sqrt{2} \sqrt{2}$		
	0	F	4.5	166		$\sigma \simeq G_F^2 M_N^2 Y^2$		
-	1	S	3.5	537	$(HH^*H^*H^*)$	>>> present bounds e.g. CDMS		
<u>5</u>	1	F	3.2	534		C.S. ODIVID		
	- 9	S	3.5	906	$(H^*H^*H^*H^*)$			
	2	F	3.2	900		need $Y = 0$		
<u>7</u>	0	S	8.5	166				

The ideal DM candidate is								
wea	akly					tral, stable		
$SU(2)_L$	$U(1)_Y$	spin	$M ({\rm TeV})$	$\Delta M({ m MeV})$	decay ch.	and		
<u>2</u>	1/2	S	0.43	348	EL	not excluded		
<u></u>	1/2	F	1.2	342	EH	by direct searches!		
	0	S	2.0	166	HH^*			
2	0	F	2.6	166	LH			
<u>3</u>	1	S	1.4	540	HH,LH			
	1	F	1.8	526	LH			
	1/2	S	2.4	353	HHH^*			
4	1/2	F	2.5	347	(LHH^*)			
4	3/2	S	2.4	729	HHH			
	0/2	F	2.5	712	(LHH)			
	0	S	5.0	166	(HHH^*H^*)			
	0	F	4.5	166				
	1	S	3.5	537	$(HH^*H^*H^*)$			
<u>5</u>		F	3.2	534				
	2	S	3.5	906	$(H^*H^*H^*H^*)$			
		F	3.2	900				
<u>7</u>	0	S	8.5	166				

			The ide			
Wea	akly					itral, stable
$SU(2)_L$	$U(1)_Y$	spin	$M ({\rm TeV})$	$\Delta M({ m MeV})$	decay ch.	and not excluded
2	1/2	S	0.43	348	EL	not excluded
4	т <i> 4</i>	F	1.2	342	EH	
	0	S	2.0	166	HH^*	
9	0	F	2.6	166	LH	
<u>3</u>	1	S	1.4	540	HH, LH	
	T	F	1.8	526	LH	
	1/2	S	2.4	353	HHH^*	
1					(LHH^*)	
<u>4</u>					HHH	
	J/2	F	2.5	712	(LHH)	
	0	S	5.0	166	(HHH^*H^*)	
	0	F	4.5	166		
F	1	S	3.5	537	$(HH^*H^*H^*)$	
<u>5</u>	1	F	3.2	534		
	9	S	3.5	906	$\left(H^{*}H^{*}H^{*}H^{*}\right)$	
	2	F	3.2	900	_	
<u>7</u>	0	S	8.5	166		

			The ide				at a bla
Wea	the states of the second secon						stable
$SU(2)_L$	$U(1)_Y$	spin	$M ({\rm TeV})$	$\Delta M({ m MeV})$	decay ch.		and xcluded
2	1/2	S	0.43	348	EL	not e	xcluded
<u> </u>	1/2	F	1.2	342	EH		
	0	S	2.0	166	HH^*		
2	0	F	2.6	166	LH		
<u>3</u>	1	S	1.4	540	HH, LH		
		F	1.8	526	LH		
	1/2	S	2.4	353	HHH^*		
1					(LHH^*)		
<u>4</u>					HHH		
		F	2.5	712	(LHH)		
	0	S	5.0	166	(HHH^*H^*)		
		F	4.5	166			
Ĕ					$(HH^*H^*H^*)$		
<u>5</u>		F	3.2	534	—		
	2	S		906	$(H^*H^*H^*H^*)$		
		F	3.2	900			
<u>7</u>	0	S	8.5	166			

			The ide			
Wea	akly					itral, stable
$SU(2)_L$	$U(1)_Y$	spin	M (TeV)	$\Delta M({ m MeV})$	decay ch.	and not excluded
<u>2</u>	1/2	S	0.43	348	EL	not excluded
	1/2	F	1.2	342	EH	
	0	S	2.0	166	HH^*	
2	0	F	2.6	166	LH	
<u>3</u>	1	S	1.4	540	HH, LH	
	L	F	1.8	526	LH	
	1/2	S	2.4	353	HHH^*	
4						
<u>4</u>						
	0/2	F	2.5	712	(LHH)	
	0	S	5.0	166	(HHH^*H^*)	
	0	F	4.5	166	—	🔶 We have a
_ ~	1	S	3.5	537	$(HH^*H^*H^*)$	winner!
<u>5</u>	1	F	3.2	534	_	
	2	S		906		
		F	3.2	900	—	
<u>7</u>	0	S	8.5	166	—	\leftarrow and a 2° place

Recap:

A fermionic $SU(2)_L$ quintuplet with Y = 0provides a DM candidate with M = 4.5 TeV, which is fully successful: - neutral - automatically stable \downarrow like proton stability and not yet discovered by DM searches.

A scalar $SU(2)_L$ eptaplet with Y = 0 also does.

(Other candidates can be cured via non-minimalities.)

DM detection

direct detection like CDMS

production at colliders

(line + continuum) from annihil in galactic halo or center (line + continuum) EGRET, WMAP

\indirect e

from annihil in galactic halo or center from annihil in galactic halo or center from annihil in galactic halo or center $\bar{\nu}$ from annihil in massive bodies in neutrino telescopes

Direct Detection one-loop processes

$$\mathscr{L}_{\text{eff}}^{W} = (n^{2} - (1 - 2Y)^{2}) \frac{\pi \alpha_{2}^{2}}{16M_{W}} \sum_{q} \left[(\frac{1}{M_{W}^{2}} + \frac{1}{m_{h}^{2}}) [\bar{\mathcal{X}}\mathcal{X}] m_{q} [\bar{q}q] - \frac{2}{3M} [\bar{\mathcal{X}}\gamma_{\mu}\gamma_{5}\mathcal{X}] [\bar{q}\gamma_{\mu}\gamma_{5}q] \right]$$

larger for higher n

$$\begin{array}{ll} \mbox{Spin-Independent} & \mbox{Spin-Dependent} \\ \propto \frac{m_q}{M_W^3} & \propto \frac{1}{MM_W} \\ & \mbox{$\langle N|\sum_q m_q \bar{q}q | N \rangle \equiv fm_N$} & \left(f \simeq \frac{1}{3}\right) \end{array}$$

Direct Detection

(NB: no free parameters => one predicted point per candidate)

[skip to conclusions]

Conclusions

The DM problem requires physics beyond the SM.

Introducing the minimal amount of it, we find a few fully successful DM candidates: massive, neutral, *automatically* stable.

The "best" is the fermionic $SU(2)_L$ quintuplet with Y = 0. (M = 4.5 TeV)

Its phenomenology is precisely computable:

- can be found in next gen direct detection exp's,

- could give signals in indirect detection exp's,
- too heavy to be produced at LHC.

(Other candidates have different properties.)

Back-up slides

Non-Minimal terms in the scalar case Quadratic and quartic terms in \mathcal{X} and H: $\lambda_{H}(\mathcal{X}^{*}T^{a}_{\mathcal{X}}\mathcal{X})(H^{*}T^{a}_{H}H) + \lambda'_{H}|\mathcal{X}|^{2}|H|^{2} + \frac{\lambda_{\mathcal{X}}}{2}(\mathcal{X}^{*}T^{a}_{\mathcal{X}}\mathcal{X})^{2} + \frac{\lambda'_{\mathcal{X}}}{2}|\mathcal{X}|^{4}$ [1] [2] [3] [4]

- do not induce decays (even number of $\mathcal{X},$ and $\langle \mathcal{X}
angle = 0$)

- [3] and [4] do not give mass terms
- after EWSB, [2] gives a common mass $\sqrt{\lambda'_H v} \approx \mathcal{O}(\lesssim 100 \text{ GeV})$ to all \mathcal{X}_i components; negligible for $M = \mathcal{O}(\text{TeV})$
- after EWSB, [1] gives mass splitting $\Delta M_{\text{tree}} = \frac{\lambda_H v^2 |\Delta T_X^3|}{4M} = \lambda_H \cdot 7.6 \text{ GeV} \frac{\text{TeV}}{M}$ between \mathcal{X}_i components; assume $\lambda_H \lesssim 0.01$ so that $\Delta M_{\text{tree}} \ll \Delta M$
- (Anyway, scalar MDM is less interesting.)

If you want to cure ill candidates...

 $Y \neq 0 \ :$ introduce some mechanism to forbid coupling with Z^0 anyway

e.g. mixing with an extra singlet splits the 2 components of \mathcal{X} ; if splitting is large enough, NC scattering is kinematically forbidden...

stability: impose some symmetry to forbid decays (e.g. R-parity)...

...the case of SuSy higgsino

Production at colliders

$$\hat{\sigma}_{u\bar{d}} = \frac{g_{\mathcal{X}}g_2^4(n^2 - 1)}{13824 \ \pi \hat{s}} \beta \cdot \begin{cases} \beta^2 \\ 3 - \beta^2 \end{cases}$$

if \mathcal{X} is a fermion if \mathcal{X} is a scalar

(similarly $\hat{\sigma}_{u\bar{u}}, \hat{\sigma}_{d\bar{d}}, \hat{\sigma}_{d\bar{u}}$) $\beta = \sqrt{1 - 4M^2/\hat{s}}$ Large production for small M. $2 \times$ LHC to produce heavy candidates.

A clean signature:

 $\tau \simeq 44 \mathrm{cm}/(n^2 - 1)$

$$\begin{aligned} \mathcal{X}^{\pm} \to \mathcal{X}^{0} \pi^{\pm} &: \quad \Gamma_{\pi} = (n^{2} - 1) \frac{G_{\mathrm{F}}^{2} V_{ud}^{2} \Delta M^{3} f_{\pi}^{2}}{4\pi} \sqrt{1 - \frac{m_{\pi}^{2}}{\Delta M^{2}}}, \qquad \mathrm{BR}_{\pi} = 97.7\% \\ \mathcal{X}^{\pm} \to \mathcal{X}^{0} e^{\pm} (\overline{\nu}_{e}) &: \quad \Gamma_{e} = (n^{2} - 1) \frac{G_{\mathrm{F}}^{2} \Delta M^{5}}{60\pi^{3}} \qquad \qquad \mathrm{BR}_{e} = 2.05\% \\ \mathcal{X}^{\pm} \to \mathcal{X}^{0} \mu^{\pm} (\overline{\nu}_{\mu}) &: \quad \Gamma_{\mu} = 0.12 \ \Gamma_{e} \qquad \qquad \qquad \mathrm{BR}_{\mu} = 0.25\% \end{aligned}$$

Events at LHC $\int \mathcal{L} dt = 100/\text{fb}$ $(\overline{0.7 \div 2) \cdot 10^3}$ $120 \div 260$ $0.2 \div 1.0$ $0.4 \div 2.2$ $11 \div 33$ $26 \div 80$ $0.1 \div 0.7$ $3.6 \div 18$ $0.1 \div 0.6$ $2.7 \div 14$ $\ll 1$ $\ll 1$ $\ll 1$

Interlude: the "DMtron"

Can one have CC DM interactions? (tree level!)

Need to provide $\Delta M = M_{\mathcal{X}^+} - M_{\mathcal{X}} = 166 \text{ MeV}$

Accelerate nuclei and use DM as diffuse target.

$$\hat{\sigma}(a \,\mathcal{X} \to a' \,\mathcal{X}^{\pm}) = \sigma_0 \frac{n^2 - 1}{4} \left[1 - \frac{\ln(1 + 4E^2/M_W^2)}{4E^2/M_W^2} \right]$$
$$\sigma_0 = \frac{G_F^2 M_W^2}{\pi} = 1.1 \, 10^{-34} \, \text{cm}^2$$

$$\frac{dN}{dt} = \varepsilon N_p \sigma \frac{\rho_{\rm DM}}{M} = \varepsilon \frac{10}{\rm year} \frac{N_p}{10^{20}} \frac{\rho_{\rm DM}}{0.3 {\rm GeV/cm^3}} \frac{{\rm TeV}}{M} \frac{\sigma}{3\sigma_0}$$

not unreasonable? tagging χ^+

number of targets number of bullets "efficiency"

[skip to conclusions]

i.e. $\nu, \bar{p}, e^+, \gamma, \bar{D}$ from MDM annihilations in halo or body. Signal in ν : promising at neutrino telescopes

Enhanced cross section in vector bosons due to resummed diagrams when Non-Relativistic $\overline{\mathcal{X}}\mathcal{X}$ are a "bound state":

 $\alpha_2 M_W \sim \Delta M \approx E_B \sim \alpha_2^2 M$

Hisano et al., 2004, Hisano et al., 2005

resonances match M for n = 3Signal in \bar{p}, e^+, γ : promising if enhanced

Comparison with SplitSuSy-like models

Arkani-Hamed, Dimopoulos and/or Giudice, Romanino 2004 Arkani-Hamed, Dimopoulos, Kachru 2005 Mahbubani, Senatore 2005

SplitSuSy-like

- mainly Higgsino (a fermion doublet)
- + something else (a singlet)
- stabilization by R-parity
- want unification also
- unification scale is low, need to embed in 5D to avoid proton decay

Mahbubani, Senatore 2005

MDM

- arbitrary multiplet, scalar or fermion
- nothing else (with Y=0)
- automatically stable
- forget unification, it's SM
- nothing

Common feature: the focus is on DM, not on SM hierarchy problem.