

Recent neutrino cross-section measurements at T2K

GDR Neutrino – November 2015 - Saclay

A hot topic...

 Oscillation measurements in far detector constrained from near detector (xsec x flux)

$ND \rightarrow FD$ extrapolation :

- different acceptance and target
- different E_v spectrum
- $\nu_{\mu} \rightarrow \nu_{e}, \nu_{\mu}$
- \rightarrow rely on models to extrapolate

Source of uncertainty	$ u_\mu ext{ CC} $	$\nu_e \text{ CC}$
Flux and common cross sections		
(w/o ND280 constraint)	21.7%	26.0%
(w ND280 constraint)	2.7%	3.2%
Independent cross sections	5.0%	4.7%
SK	4.0%	2.7%
$\rm FSI+SI(+PN)$	3.0%	2.5%
Total		
(w/o ND280 constraint)	23.5%	26.8%
(w ND280 constraint)	7.7%	6.8%

T2K Phys. Rev. D 91, 072010 (2015)

- Measurement of v xsec at ND is experimentally complicated:
 - E_v not known: xsec measurement always convoluted with flux → importance of minimization of uncertainties in flux modeling (and/or ratio measurements)
 - E_v inferred from final state leptons/hadrons which have limited angular acceptance, threshold on low energy particles, very small info on recoiling nucleus...

large model uncertainties convoluted with unfolding of detector effects \rightarrow measurements also quoted in limited phase space, x-checks btw different selections

large model uncertainties on background \rightarrow control regions and sidebands to constrain background from data

Outline

Neutrino xsec as a <u>nuclear physics</u> problem

• CC0 π dominant at T2K

 \rightarrow from the detector measurement (muon+proton) to the incoming neutrino energy

• CC1 π (+ DIS) dominant at NOVA

 \rightarrow how to disentangle Final State Interaction effects

• Impact on present and future oscillation measurements ($\delta_{_{CP}}$) : $\nu_{\mu} \rightarrow \nu_{e}$, $\nu_{\mu/e}$

- (+ proton module : fully active scintillator)
- coarser granularity, not magnetized but larger mass
- POD scintillator with water target

4/21

Nuclear physics is the name of the game

- CCQE model tuned from bubble chambers vH data: M_A^{QE}~1GeV
 → modern experiments (K2K) include nuclear effects on heavy target (C,O): Fermi Gas
- MiniBoone measurement shows large discrepancy wrt to this model (large M_A^{QE}) ⁵/_b → explication from theoretical models

including :

- long range correlation between nucleons (aka RPA)
- possibility of interactions with NN pairs (aka 2p2h and MEC effects)

 $u_{\mu} n p \rightarrow \mu^{-} p p$ $\overline{\nu}_{\mu} n p \rightarrow \mu^{+} n n$

(well known in ep scattering but not definitive model)

 Final State Interaction only included in MC models: CC1π with pion re-absorption included in signal (CC0π)

CC0π: T2K new result

 Difficult to make quantitative statement about "preferred" model → difficult to interpret statistically the model uncertainties for oscillation analysis

The only way out: increase/improve the experimental data

■ Models do not describe well the proton kinematics → analyses should have largest possible acceptance and avoid to unfold on model dependent variables (Q², E_y)

Why is that a problem?

Why we need to know the CC0 π xsec is such details (not just norm but shape) to perform the ND \rightarrow FD extrapolation? ND and FD have different E_y spectra

Possible shortcuts (1)

Possible shortcuts (1)

Moving to larger energies ...

Moving to larger energies ...

Moving to larger energies ...

Future experiments: v_{λ} and v xsec

 $\sigma = \sqrt{\Delta \chi^2}$

- We are interested to v. appeareance and δ_{CP} from v - v comparison but in ND we mostly measure v_{\parallel} cross-sections.
- In future (HK, DUNE) large samples of 4 v species \rightarrow the uncorrelated uncertainties are relevant
 - **HK** needed uncertainty to have • negligible impact on dCP:

v_-v_ uncorrelated 1-2%

 For DUNE assumed: uncorrelated v_{μ} - v_{μ} 5% and v_{e} - v_{e} 2%

(shape of v_{μ} itself may be more important for DUNE: shape analysis and spanning over different xsec)

18/21

• $\pi^0 \rightarrow \gamma$ background constrained from data (2.1 % systematics)

- large model-dependence where very small efficiency (otherwise stat. limited)
- v_e on water with T2K P0D filled with water or emptied (air)

$$R_{water\,runs} = data_{water} / MC_{water} = 0.89 \pm 0.08 (stat.) \pm 0.11 (syst)$$

$$R_{water \, runs} = data_{air} / MC_{air} = 0.90 \pm 0.09 \, (stat.) \pm 0.13 \, (syst)$$

$$R_{on water} = (water - air)_{data} / (water - air)_{MC} = 0.87 \pm 0.33 (stat.) \pm 0.21 (syst)$$

 ν_µ xsec measurment (CC inclusive and CC0π) ongoing at T2K (CEA):

$$\frac{\sigma^{v} - \sigma^{\overline{v}}}{\sigma^{v} + \sigma^{v}} \longrightarrow \delta_{CP}$$

The way out?

Importance of theoreticians

- Quite rare (today) nuclear-physics know-how
 (same expertise needed for 0vββ matrix elements: collaboration?)
- Neutrino community should push for a better funding/visibility of this theoretical/nuclear physics

→ will be fundamental for the success of present/future neutrino long baseline experiments

ENSTN workshop at Saclay (April 2015)

by M.Martini (CEA, SPhN)

Two-body current contributions in neutrino-nucleus scattering

Marco Martini* Ghent University, Ghent, Belgium and IRFU/SPhN, CEA-Saclay, France

> Maria Barbaro* University of Turin and INFN, Turin, Italy

> > Sara Bolognesi* IRFU/SPP, CEA-Saclay, France

Magda Ericson* IPNL, Lyon, France and CERN, Geneva, Switzerland

> Natalie Jachowicz* Ghent University, Ghent, Belgium

Project of the Espace de Structure et de réactions Nucléaires Théorique

http://esnt.cea.fr

Spring 2016

CEA Saclay, SPhN, Orme des Merisiers, b. 703, room 135, F-91191 Gif-sur-Yvette

BACKUP

Recent neutrino cross-section measurements at T2K

GDR Neutrino – November 2015 - Saclay

CC inclusive: T2K

- Simple analysis: require at least one muon (small background from NC and flux pollution v_)
- Dominated by CCQE at T2K E, energy:
- \rightarrow indications in favour of new models with 2p2h

\rightarrow agreement also with old tuned models

CC0π: proton kinematics

CC0π MINERvA: vertex activity

unlikely to be due to systematics (eg, FSI): highly correlated (0.7) btw v_{μ} and v_{μ}

In the pipeline for T2K:

- proton counting (but modelling of proton kinematics basically unknown...)
- water vs carbon \rightarrow disentangle FSI from MEC
- comparison of v and \overline{v} CC0 π : MEC/2p2h effects partially suppressed in \overline{v}

ArgoNeuT: 2p2h observation

Proof of principle of LAr technology: full 3D imaging, very low proton threshold (21 MeV)

- Short Range Correlation NN pair typically above Fermi level
- \rightarrow final state with μ + 2 high-momentum protons (no experimental sensitivity to neutrons)
 - back-to-back protons before FSI:

 $\text{CC}\ \Delta$ pionless decay and meson exchange current with low momentum transfer to the pair

• back-to-back protons in Lab. reference frame:

CCQE interaction on a nucleon in SRC pair \rightarrow correlated n ejected as well due to high relative momentum of the pair

50 100 150 200 W

from analogy to electron-N and hadron-N scattering

More precise quantitative analysis need improved models for interpretation of experimental data (including FSI!)

MINOS: CCQE

Effective parametrization for background constraint and signal (M_{A}^{QE})

CC1 π^{\pm} coherent: MINERvA

- Similar selection and background constraints applied to v and \overline{v} beams \rightarrow large suppression of backgrounds wrt to MC predictions (60-70 %)
- Enough statistics for a differential measurement
- \rightarrow indication of suppression at low π energy and large π angle wrt to Rein-Seghal model
- systematics dominated by model uncertainties

MINERvA : π^0 from CC in ν beam

- Interesting channel $\overline{\nu} p \rightarrow \mu^+ n \pi^0$:
 - NC $\pi^{\scriptscriptstyle 0}$ production is dominant background for $\nu_{_{\rm e}}$ appearance
 - provide constraints on FSI for π^0 : no π^0 beam \rightarrow FSI model based only on isospin relations $\pi^{\pm} \rightarrow \pi^0$
- Analysis:
 - require μ + (MINOS) π 0 (from energy deposited by $\gamma\gamma$)
 - background normalized from data: 70 % from multi-π with π⁰ and missing π[±]
- Results: only 20% signal has no FSI
 - \rightarrow results indicate preference for presence of FSI

DIS Cross Section Ratios – $d\sigma / dx_{Bi}$

Select DIS sample by requiring $Q^2 > 1$ GeV² and W > 2 GeV (these cuts remove the quasi-elastic and resonant background)

x dependent ratios directly translates to *x* dependent nuclear effects (interpret data at partonic level) cannot reach the high-*x* with current beam energy (LE data sample)

MINERvA data suggests additional nuclear shadowing in the lowest x bin $(<x> = 0.07, <Q^2> = 2 \text{ GeV}^2)$

In EMC region (0.3 < x < 0.7) good agreement between data and models (GENIE assumes an *x* dependent effect from charged lepton scattering on nuclei)

Beyond oscillation analysis

■ Inelastic: $v + {}^{16}O \rightarrow v + {}^{16}O^* \rightarrow de$ -excitation γ used to detect SN neutrinos (10-20 MeV)

NCQE: $\nu + {}^{16}O \rightarrow \nu + p + {}^{15}N^*$

- \rightarrow primary deexcitation γ + secondary γ from p scattering (overwhelming at ~500 MeV \rightarrow bkg for SN v counting)
- Measurement at Super-Kamiokande
- very low PMT trigger threshold (radioactive bkg removed with beam timing cut)
- primary background from non-QE interaction with pion reabsorption by FSI

Neutrino Energy (GeV)

