Low-scale sessaw mechanisms and how to test them

Stéphane Lavignac (IPhT Saclay)

- the various seesaw mechanisms
- constraints on heavy sterile neutrinos
- heavy Majorana neutrino production at colliders
- scalar and fermionic electroweak triplets

The seesaw mechanism

Generalization: heavy fields that couple both to lepton (L) and Higgs doublets \rightarrow Majorana neutrinos

- RH neutrinos N_i (Type I seesaw) [Minkowski - Mohapatra & al - Gell-Mann & al -Yanagida]
- ② Scalar SU(2) triplet Δ (Type II seesaw) [Schechter & al Lazarides & al Mohapatra & al Wetterich]
- Vector-like fermion SU(2) triplets Σ_i (Type III seesaw) [Foot & al]

[Deppisch, Dev, Pilaftsis, arXiV:1502.06541]

Figure 3. Limits on the mixing between the electron neutrino and a single heavy neutrino in the mass range $100~{\rm MeV}$ - $500~{\rm GeV}$. For details, see text.

[arXiV:1502.06541]

Figure 4. Limits on the mixing between the muon neutrino and a single heavy neutrino in the mass range 100 MeV - 500 GeV. For details, see text.

[arXiV:1502.06541]

Figure 5. Limits on the mixing between the tau neutrino and a single heavy neutrino in the mass range $100~{\rm MeV}$ - $500~{\rm GeV}$. For details, see text.

[A. Blondel et al., arXiv:1411.5230]

Figure 7: Sketch of the topology of a $Z \rightarrow \nu N$ decay, with N subsequently decaying into μ^+W^- .

Figure 4: Decay modes of heavy neutrinos through mixing with light neutrinos: the charged current decay $N \to \ell \nu$ (a), the neutral current decay $N \to \nu + \gamma/Z$.

(c) Decay length 0.01-500 cm, $10^{13} Z^0$

Figure 1: The tree-level diagram for the production of a heavy Majorana neutrino (N) in the mTISM model. Lepton flavour is denoted by α and β . Lepton flavour is assumed to be conserved, such that $\alpha = \beta$. The W boson produced from the N decay is on-shell and, in this case, decays hadronically.

Figure 2: The tree-level diagrams for the production of a heavy Majorana neutrino (N) in the LRSM model, in which heavy gauge bosons W_R and Z' are also incorporated. Lepton flavour is denoted by α and β . Lepton flavour is assumed to be conserved, such that $\alpha = \beta$. The W_R boson produced from the N decay is off-shell and, in this case, decays hadronically.

Figure 10. Left: Feynman diagrams contributing to the 'smoking gun' collider signal of LNV $(\ell^{\pm}\ell^{\pm}jj)$ in the LRSM through the production via SM $W_{(L)}$ and heavy W_R , giving rise to 4 different contributions: RR, RL, LL, LR. Right: Comparison of LNV event rates via the RR diagram at the LHC and in $0\nu\beta\beta$ experiments [307]. The solid blue contours give the signal significance of 5σ and 90% at the LHC with 14 TeV and $\mathcal{L}=300~{\rm fb}^{-1}$. The area denoted 'LHC excl.' is excluded by current LHC searches in the electron channel [305]. The green contours show the sensitivity of current and future $0\nu\beta\beta$ experiments, assuming dominant doubly-charged Higgs or heavy neutrino exchange and the red contours show the sensitivity of LFV processes as denoted.

Neutrinoless Double Beta Decay in the LRSM

Figure 1: Feynman diagrams for pair and associated production of Φ^{++} .

Figure 1: Feynman diagram for the dominant contribution to three-charged-leptons final states in pair production of Σ in the type III seesaw models. The production cross section for the charged-conjugate intermediary W⁻ is expected to be about a factor of two smaller.