

Rabat: December 17th, 2015

Journées Scientifiques du GDRI P2IM

Outline

- Active Neutrinos: SM and Beyond
- Light Sterile Neutrino and the Reactor Anomaly
- Socillation Anomalies: A Global Fit
 - ✓ Nu-e Appearance
 - ✓ Nu-e Disappearance
 - ✓ Nu-mu Disappearance
 - ✓ Sterile Neutrino Oscillation: Global Picture

Stereo Experiment @ ILL:

- ✓ Detector description
- ✓ Simulation and calibration of the detector: neutron sources,
- ✓ Stereo Anomaly Contour Sensitivity

Standard Model

- Neutrinos are the only massless fermions
- > Neutrinos are the only fermions with only left-handed component ν_L

Extension of the SM: Massive Neutrinos

- > Simplest extension: introduce right-handed component ν_R
- Neutrinos become massive
- > Dirac mass $m_D \overline{\nu_R} \nu_L$ + Majorana mass $m_M \overline{\nu_R^c} \nu_R$
- It is likely that right-handed neutrinos are connected with new physics beyond the Standard Model

Sterile Neutrinos

> Light anti- ν_R are called sterile neutrinos

 $\nu_R^c \rightarrow \nu_s$ (left-handed)

- Sterile means no standard model interactions
- > Active neutrinos $(\nu_e, \nu_\mu, \nu_\tau)$ can oscillate into sterile neutrinos (ν_s)
- Observables:
 - ✓ Disappearance of active neutrinos
 - Indirect evidence through combined fit of data
- Extremely interesting and powerful window on new physics beyond the Standard Model

Sterile neutrino may have large mass scale: See-saw, GUT, v-MSM and LSND

Sterile neutrino might be a sign of dark mater

	N mass	v masses	eV v anoma- lies	BAU	DM	M _H stability	direct search	experi- ment
GUT see-saw	10-16 10 GeV	YES	NO	YES	NO	NO	NO	-
EWSB	2-3 10 GeV	YES	NO	YES	NO	YES	YES	LHC
v MSM	keV – GeV	YES	NO	YES	YES	YES	YES	a'la CHARM
v scale	eV	YES	YES	NO	NO	YES	YES	a'la LSND

Solar and Atmospheric Neutrino Oscillations

 $\Delta m_{\rm ATM}^2 \simeq |\Delta m_{31}^2| \simeq |\Delta m_{32}^2| \simeq 2.4 \times 10^{-3} \, {\rm eV}^2$

6

The Reactor Neutrino Anomaly

0.6 0.7 0.8 0.9 1 1.1		$\chi^2 = (r - R) W^{-1} (r - R)$
Weighte	ed averåge	
	0.92 ±0.01 ±0.07	0
	0.94 ±0.01 ±0.07	Weights: $W = \Sigma_{unc.}^2 + \Sigma_{cor.} C \Sigma_{cor.}$
ROVNO88_1S	$0.95 \pm 0.01 \pm 0.07$	
ROVNO88_21	0.93 ±0.01 ±0.06	with $\Sigma_{\rm unc.}^2 = \Sigma_{\rm tot.}^2 - \Sigma_{\rm cor.}^2$
	$0.90 \pm 0.01 \pm 0.06$	$(\Delta m^2 - L)$
SRP-II 23.8 m	$1.00 \pm 0.01 \pm 0.04$	$r = P_{ee} = 1 - \sin^2(2\theta_{new})\sin^2\left(\frac{-4\theta_{new}}{4E_{ee}}\right)$
SRP-I Internet intern	0.94 ±0.01 ±0.03	$(\neg L_{\bar{\nu}_{e}})$
Krasnoyarsk-III Hate	0.93 ±0.01 ±0.05	
Krasnoyarsk-II H H	0.94 ±0.18 ±0.05	\rightarrow The synthesis of published SBL (Short
Krasnoyarsk-I Hard	0.92 ±0.03 ±0.06	BaseLine) experiments leads to a
1LL +- +-	$0.79 \ \pm 0.06 \ \pm 0.05$	deficit of anti-V: " $R^{*} = 0.927 \pm 0.023$
Goesgen-III III	0.91 ±0.04 ±0.05	Total deficit of 7%
Goesgen-II H - A I - I	$0.97 \pm 0.02 \pm 0.06$	
Goesgen-I	$0.95 \pm 0.02 \pm 0.06$	
Bugey3 H A H	$0.86 \pm 0.11 \pm 0.04$	
Bugey3 Hand	$0.94 \pm 0.01 \pm 0.04$	
Bugey-3/4 Har-1	$0.93 \pm 0.00 \pm 0.04$	
	0.92 ±0.02 ±0.03	\rightarrow The effect is statistically significant at more
Bugey-3/4	0.93 ±0.00 ±0.03	than 98.6% C.L (2.95σ)
τ_=881.58 Average	0.927 ±0.023	(SBL neutrino anomaly)
		Mention et all. 1101.2755
0.6 0.7 0.8 0.9 1 1.1	1.2 1.3 1.4	8
V _{Measured} / V _{Expected, NEW}	arXiv:1204.537	79

The Reactor Neutrino Anomaly

At least four alternatives:

- > The anomaly could be explained by a common bias in all reactor neutrino experiments?
- > Measurements used different detection techniques (scintillator counters and integral detectors).
- > Neutrons were tagged either by their capture in metal-loaded scintillator, or in proportional counters
- New physics at short baseline explaining a deficit of anti-v_e
 - ✓ Oscillation towards a 4th Sterile neutrino?
 - \checkmark a 4th oscillation mode with: θ_{new} and ΔM^2_{new}

The 4th Neutrino Hypothesis

Combination data from reactors and MiniBooNE, no spectral shape information
 Fit to anti-v_e disappearance hypothesis

10

Future Reactor Efforts

Future reactors will control reactor flux uncertainty by near/far measurements

- The backgrounds at few meters from the reactor core is still an experimental challenge
 11
- > If solved, would provide detectors for potential safeguards applications

Motivation of Stereo Experiment

- > The Stereo experiment aims to detect a clear signal of neutrino oscillation
- > The distortion of the energy spectrum inside the detector.
- > Stereo detector has to fulfill two main criteria:
 - ✓ a good energy resolution
 - \checkmark a good precision in the vertex reconstruction

Experimental signature:

- Highly enriched ²³⁵U as the nuclear fuel && small contribution of other isotopes
- > Intense and pure production of electronic antineutrinos
 ≈ 1.9 * 10²⁰ anti-v/s/GW_{th}
- > Detection with the inverse beta decay reaction in a liquid scintillator:

$$\bar{\nu_e} + p \rightarrow e^+ + n$$

A neutrino candidate is considered if a coincidence of a Prompt and Delayed signal in a time window of 50 µs

The Stereo Geometry

- Target vessel is divided in five 40 cm identical cells each is: 90 cm high and 1.10 cm wide
- > The target is filled with 2 m³ of liquid scintillator
- Data from cells exploit the energy and baseline dependence of the sought new oscillation pattern
- Unambiguous signature is provided by the comparison of the predicted energy spectrum with the spectrum measured in each cell

$$E_{vis} = E_{\bar{\mathbf{v}}_e} - \Delta + m_e \simeq E_{\bar{\mathbf{v}}_e} - 0.782 \, MeV$$

Geant4 visualization

The Stereo Geometry

Geant4 visualization of Stereo, target cell and response to sources

The Calibration System

Simulations have shown that calibration of energy scale is possible from outside of the vessel containing the LS. n efficiency requires introduction of n sources inside LS.

Neutron Detection Efficiency

sta 4000 Center Border 3500 3000 RMS/Peak = 11.5% 2500 2000 1500 1000 500 0.5 1.5 2.5 3 3.5 2 Detected Energy (MeV)

Response to 2 MeV positrons

Aprox 90% of captures are in Gd
Capture time is: 15 µs Gd and 200 µs H

- Mean detection efficiency for neutrons:
 - ✓ 66% in the center cell ✓ 60% in the border
- Total energy of gammas cascade: 8 MeV

Calibration with Different Sources: Geant4

PMTs Collected charge in (p.e)

Neutron Detection Efficiency

- A lot of gammas escape to other cells and GC ==> need E reconstruction of the entire detector
- Use proton recoil from ONE cell as Prompt signal ==> compute efficiency of individual cells

Calibration: 2014 data (Europium Source)

400

Calibration: 2014 data (Europium Source)

Towards Reactor Anomaly Sensitivity Contour

Stereo Contours: Hypothesis

Data taking period: 300 days (6 reactor cycles)

Expected neutrino interactions (per day): 662

Position of the detector:

X = 9.85 Y = 0 Z = 0

300 days data taking (6 reactor cycles)

Systematics on the energy reconstruction: $\delta E_{scale} = 2\%$

Signal / Background = 1.5

Prompt signal energy > 2 MeV

Delayed signal energy > 5 MeV

Stereo Contours

Conclusions

- Sterile neutrino explains not only existence of neutrino mass, but also its smallness.
- Sterile neutrino also explains LSND, Miniboone and reactor anomalies.
- Sterile neutrino is a good candidate for dark matter
- > A lot of experimental projects are foreseen to tackle this point
- Most of the experiments focus on both L (baseline) and E (energy) information to provide a clear L/E unambiguous oscillation pattern if any: L/E for Stereo is very optimistic
- Stereo is ready and will start data taken June 2016
 - ✓ Chance to explore with more precision the reactor anomaly
- > The sensitivity covers the contour of the reactor anomaly
- Establishing the existence of sterile neutrinos would be a major result
- These are certainly exciting times for neutrino physics

Thank you for your attention

Back-up

The 4th Neutrino Hypothesis

The reactor antineutrino anomaly could be explained through the existence of a fourth nonstandard neutrino, corresponding in the flavor basis to a sterile neutrino v_s

 $|\Delta m^2_{\text{new}_R}| > 0.5 \text{ eV}^2 \text{ and } \text{Sin}^2(2\theta_{\text{new}_R}) \approx 0.14$

30

The no-oscillation analysis is excluded at 99.8% (3 σ)

Uncorrelated

Fission Spectrum	0.7 ightarrow 4.0%					
Correlated						
Weak Magnetism	(E-1.0)*1.0%/MeV					
Evt. by evt. baseline uncertainty	$\delta L = 32 \text{ cm}$					
Energy scale from calib. sources	2.0%					
Monitoring	1.0%					
Normalization						
Np	0.5%					
Spill in spill out	1.0%					
Detection efficiency	2.0%					
Thermal power	2.0%					
Fission spectrum	1.8%					
Total nomalization	3.5%					

