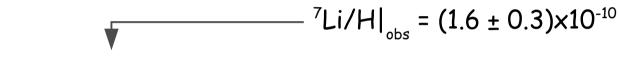


A light particle solution to the cosmic ⁷Li problem

RPP, 25/01/2016


arXiv:1510.08858, in collaboration with M. Pospelov, J. Pradler

Andreas Goudelis HEPHY - Vienna

The cosmological ⁷Li problem

Given the WMAP/Planck measurement of $\eta = (6.10 \pm 0.04) \times 10^{-10}$, SBBN explains (very!) successfully the abundances of light elements in the universe...

...but seems to fail when it comes to the ⁷Li abundance:

Value inferred from Pop II stars (low metallicity).

$$^{7}\text{Li/H}|_{SBBN} = (4.68 \pm 0.67) \times 10^{-10}$$

Predicted abundance too large by factor 2 - 5.

Solutions include:

- Pop II stars not a good tracer of primordial ⁷Li

Harder than it sounds if treated seriously

- Inject photons

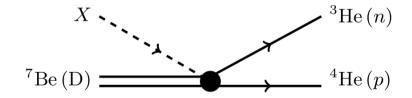
Works, cf e.g. arXiv:1006.4172, arXiv:1502.01250

- Inject catalysts

Works, cf e.g. hep-ph/0703096, arXiv:0711.4866, arXiv:1403.4156

- Inject extra neutrons

Basically excluded, overproduces D


A new solution to the ⁷Li problem

One of the main problems of injecting extra neutrons: D overproduction.

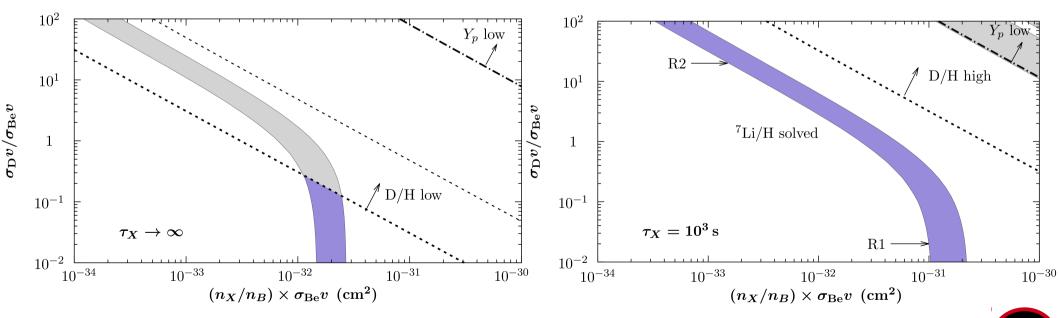
But what if we instead "borrow" some of the already existing ones?

The main idea:

- ⁷Li is mainly formed through ³He + ⁴He \rightarrow ⁷Be + γ , followed by ⁷Be + η \rightarrow p + ⁷Li.
- The bulk of this production takes place around T ~ [60, 40] keV and the reaction is *slow*.
- During the same period, ³He, ⁴He and D formation is *fast*.
- Inject some particles that break up ⁷Be as well as, potentially, D.

- ⁷Be destroyed by X particles *and* by borrowed neutrons from D dissociation.
- D formation remains faster than τ_n down to 10 keV. If X is injected early enough, then...

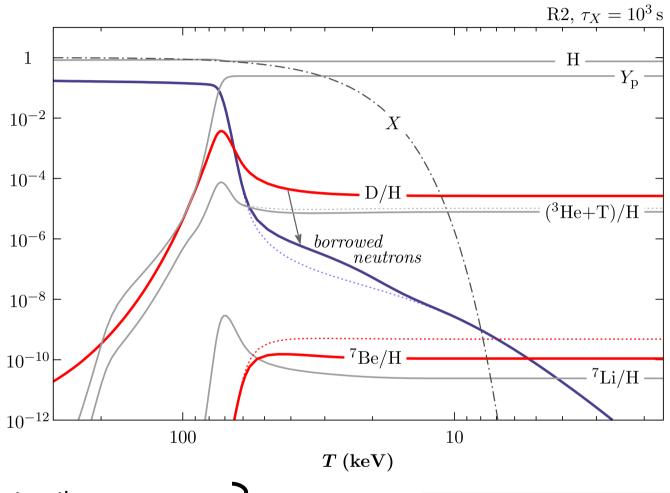
...even if we destroy some D, it may reform, unlike ⁷Be!


Ingredients and D/4He constraints

Some requirements must be met for the previous to work:

- The X particles must interact quite weakly, in order to avoid inverse reactions.
- Then, we need large-ish densities. A good condition is

$$n_b \lesssim n_X < \frac{T}{E_X} \times n_\gamma$$


- To avoid ⁴He destruction, we must further have m_x (or E_x) < 20 MeV.
- Take as free parameters : $\{m_X, \tau_X, n_X/n_b, \sigma_{\mathrm{Be}}v, \sigma_{\mathrm{D}}v\}$

NB: Of course, the two cross sections aren't really independent parameters.

Elemental abundance evolution

An illustration of the mechanism in action:

- Direct ⁷Be destruction.
- Indirect ⁷Be destruction from D dissociation induced n's.

⁷Li can be reduced to its observed abundance.

Model realizations

As a proof of principle, we consider two scenarios :

Scenario A: Heavy ALP

- X is non-relativistic, $m_{\chi} \sim [1.6, 20]$ MeV.
- Assume a toy Lagrangian as

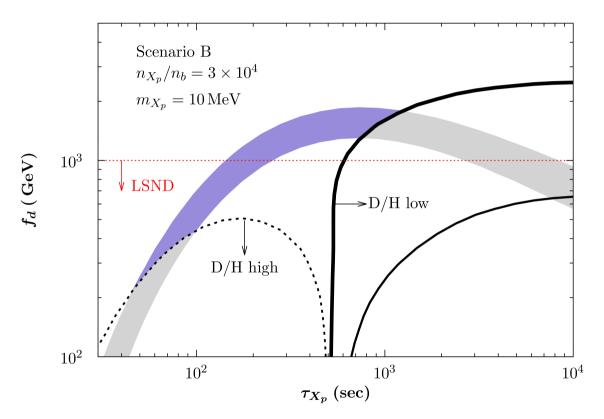
$$\mathcal{L}_{aq} = \frac{\partial_{\mu} a}{f_d} \bar{d} \gamma^{\mu} \gamma^5 d$$

- X breaks up D and ⁷Be and decays into SM/BSM radiation that redshifts away.

Scenario B : Light ALP

- A quasi-massless X arises from the decay of some (frozen-in?) progenitor particle X_p , with $m_{\chi_p} \sim [3.2, 40]$ MeV

$$\mathcal{L}_{XX_p} = AX_p \left(H^{\dagger} H \right) + BX_p a^2 + \mathcal{L}_{aq}$$


- X breaks up D and ⁷Be as previously, and eventually redshifts away itself.
- Note that to avoid hot DM constraints, X must be very light : $m_x < 1$ eV.

Overall verdict:

- Both scenarios work, scenario B is easier to realize.
- Moreover : scenario B can be tested in beam dumps e.g. through $p + a \rightarrow \gamma + p$

Summary and conclusions

- We proposed a new solution to the cosmological ⁷Li problem based on new, E/M-neutral light particles that interact non-negligibly with nucleons.

- We pointed out that even if we momentarily decrease the amount of D in the universe, if this is done early enough (but not too early) it can reform to its observed abundance.
- Moreover, the neutrons released from D dissociation can *themselves* play a role in the reduction of ⁷Li.

Idea of borrowed neutrons.

- Especially if very light particles are involved (scenario B), non-negligible parts of the parameter space are testable @ intensity frontier experiments.
- The ⁷Li problem has been around for quite a while but its particle physics solutions are far from being exhausted! Model building under construction...