Large N estimates of resonance masses in a composite Higgs model

Nicolas Bizot

In collaboration with M. Frigerio, M. Knecht and J-L. Kneur

Rencontre de Physique des Particules, LAPTh, January 27, 2016

Composite Higgs models

New strong dynamics condensates at scale $\boldsymbol{\Lambda}$ and spontaneously breaks a global symmetry \boldsymbol{G} into \boldsymbol{H}

 \Rightarrow Higgs is naturally light as a pNGB of the coset G/H

Effective models of the gauge theory

The gauge theory in term of hypergluons and fundamental fermions is difficult to study below Λ because of its non-perturbative nature

- ⇒ Useful to consider effective models
 - ► Low scale effective models:

Lagrangian is dictated by global symmetries only, model includes Goldstone bosons and light resonances

- ⇒ Little information on the details of the strong dynamics
- ▶ Intermediate scale effective models:
 - Lagrangian in term of 4-fermion operators respects explicitly the underlying gauge symmetry (gauge bosons are froze-out)
 - ⇒ Possible to make calculation of non-perturbative quantities with Nambu Jona-Lasinio (NJL) techniques [Nambu and Jona-Lasinio '61]

The framework

A composite model based on SU(4)/Sp(4)

The spontaneous global symmetry breaking $SU(4)/Sp(4) \cong SO(6)/SO(5)$ contains the Higgs doublet as a Goldstone $(Sp(4) \supset SU(2)_L)$

Realization of SU(4)/Sp(4) in term of 4-fermion operators

 $lack ext{ 4 Weyl fermions } \psi o ext{ global } SU(4) ext{ symmetry} \ ext{ [Barnard, Gherghetta and Ray, 1311.6562]}$

$$\mathcal{L}_{\psi}^{\rm S} = \frac{\kappa_{\rm A}}{2N} (\psi^{\rm a} \psi^{\rm b}) (\overline{\psi_{\rm a}} \ \overline{\psi_{\rm b}}) + \frac{\kappa_{\rm B}}{8N} \left[\epsilon_{\rm abcd} (\psi^{\rm a} \psi^{\rm b}) (\psi^{\rm c} \psi^{\rm d}) + {\rm h.c.} \right]$$

► Gauge symmetry Sp(2N): $\psi \sim \square \longrightarrow (2N)$ hypercolours $\Rightarrow \text{A condensate } \langle \psi \psi \rangle \neq 0 \text{ would breaks } SU(4) \text{ down to } Sp(4)$ [Peskin '80]

 $(\psi^a \psi^b) \sim 1_{Sp(2N)}
ightarrow ext{fermionic bilinears are hypercolour singlets}$

Dynamical mass of the fermions

Mass gap (Schwinger-Dyson equation)

 \Rightarrow Non-perturbative calculation which sums an infinite number of diagrams at leading order in 1/N expansion

Critical coupling and dynamical mass

$$1 - \frac{M_{\psi}^2}{\Lambda^2} \ln \left(\frac{\Lambda^2 + M_{\psi}^2}{M_{\psi}^2} \right) = \frac{4\pi^2}{\Lambda^2} \frac{1}{(\kappa_A + \kappa_B)}$$
 [Barnard et al '13]

Non trivial solution $M_{\psi} \neq 0$ exists only if $(\kappa_A + \kappa_B) > 4\pi^2/\Lambda^2$ \Rightarrow The global symmetry is broken above a critical coupling where a dynamical mass for the fermions M_{ψ} is generated $(\langle \psi \psi \rangle = M_{\psi}/(\kappa_A + \kappa_B))$

Mesons masses and couplings

Physical mesons are present in the spectrum after condensation

Bethe-Salpeter equation

Geometrical series re-sums an infinite number of diagrams at leading order in $1/\emph{N}$

 \Rightarrow Pole of the series is interpreted as the mass m_M of the physical meson M and the residue as the coupling $g_{M\psi\psi}$

$$iD_M^{\alpha\beta}(\rho^2) = \frac{iG \ \delta^{\alpha\beta}}{1 - G \ \Pi_M(\rho^2)} \equiv \frac{-ig_{M\psi\psi}^2 \ \delta^{\alpha\beta}}{\rho^2 - m_M^2}$$

 $G \equiv$ any scalar couplings $\Pi_M \equiv$ 2-point function

Scalar and vector mesons spectrum

Scalar spectrum

Physical mesons have the same quantum numbers as the fermionic bilinears $(\psi^a \psi^b) \sim (1+5)_{Sp(4)}$

 \Rightarrow Spectrum contains scalar and pseudo-scalar singlets and quintuplets $M=\{\sigma,\ G^{\hat{A}},\ a,\ \mathcal{S}^{\hat{A}}\}$

$$M_G^2 = 0$$
, $M_a^2 = -\frac{\kappa_B}{\kappa_A^2 - \kappa_B^2} \frac{1}{B_0(M_a^2, M_\psi^2)}$, $M_{\sigma, S}^2 = M_{G, a}^2 + 4M_\psi^2$

 \Rightarrow 5 Goldstone bosons $G^{\hat{A}}$

Vector and Axial-vector resonances

$$(\psi^a \sigma^\mu \overline{\psi}_b) \sim (1 + 5 + 10)_{Sp(4)} \Rightarrow V^\mu = \{a_1^\mu, A^{\mu \hat{A}}, \rho^{\mu, A}\}$$

NJL techniques can be applied to Spin 1 resonances as well starting from

$$\mathcal{L}_{\psi}^{\textit{V}} = -\frac{\kappa_{\textit{C}}}{2\textit{N}} \frac{\left(\psi^{\textit{a}}\sigma^{\mu}\overline{\psi_{\textit{a}}}\right)}{2\sqrt{2}} \frac{\left(\psi^{\textit{b}}\sigma_{\mu}\overline{\psi_{\textit{b}}}\right)}{2\sqrt{2}} - \frac{\kappa_{\textit{D}}}{2\textit{N}} \left(\psi^{\textit{a}}\sigma^{\mu}\overline{\psi_{\textit{b}}}\right) \left(\psi^{\textit{b}}\sigma_{\mu}\overline{\psi_{\textit{a}}}\right)$$

Phenomenological model

At least 6 free parameters: $\kappa_{A,B,C,D}$, N and Λ

Current-current interaction

Inspired by the gauge theory it is natural to start from a current-current interaction (work well in QCD [Klimt et al '90])

$$\mathcal{L}_{\psi}^{\textit{UV}} = \frac{\kappa_{\psi}}{2\,\textit{N}} \frac{\left(\psi\sigma^{\mu}\,\textit{T}^{\,\textit{I}}\,\overline{\psi}\right)}{2\sqrt{2}} \frac{\left(\psi\sigma_{\mu}\,\textit{T}^{\,\textit{I}}\,\overline{\psi}\right)}{2\sqrt{2}}$$

 $T' \equiv \text{generators of Sp(2N)}$

Fierz transformations

All of the operators are generated by Fierz transformations from the current-current interaction

$$\kappa_A = 2\kappa_C = 2\kappa_D = \kappa_\psi/8 + O(1/N)$$

 \Rightarrow Reduced set of free parameters

 κ_B is separately induced from the U(1) anomaly

Spectrum

A coloured sector based on SU(6)/SO(6)

Composite models contain top partners ie coloured resonances \Rightarrow additional sector with coloured (under $SU(3)_c$) fermions is needed

Coloured SU(6)/SO(6) sector

6 Weyl fermions $X \to global SU(6)$ symmetry

[Barnard et al '13]

$$\mathcal{L}_{X}^{S} = \frac{1}{2} m_{\chi} \left(X^{f} X^{g} \right) + \frac{\kappa_{S}}{(2N)^{2}} (X^{f} X^{g}) (\overline{X_{f}} \ \overline{X_{g}})$$

- ▶ $X \sim \square$ under $Sp(2N) \rightarrow$ less trivial Fierz transformations
- $ightharpoonup \langle XX
 angle$ spontaneously breaks SU(6) down to SO(6) [Peskin '80]
- $ightharpoonup SO(6)\supset SU(3)_c\colon 6_{SO(6)}=(3+\overline{3})_{SU(3)_c} o {\sf No}\ SU(3)_c$ anomalies
- m_{χ} explicitly breaks SU(6) and induces a mass for coloured pNGB which are more constrained by collider searches [Cacciapaglia et al '15]

Calculations are similar to the uncoloured sector with different resonances:

$$(X^f X^g) \sim (1+20)_{SO(6)} \sim (1+8+6+\overline{6})_{SU(3)_c}$$

 $(X^f \sigma^{\mu} \overline{X}_g) \sim (1+20+15)_{SO(6)} \sim (1+8+6+\overline{6}+1+8+3+\overline{3})_{SU(3)_c}$

Conclusions

We have considered a model with 4-fermion interactions and used NJL techniques to make non-perturbative calculations (masses, couplings, decay constants ···)

- The model predicts a particular pattern in the spectrum of the scalar and vector in the colourless and coloured sectors
 - ⇒ can be tested at collider
- The model depends only on few parameters if we start from the current-current operator.
 - ⇒ simple from phenomenological point of view

NJL model with 4-fermion interactions should be view as an approximation of the full gauge theory but:

- ▶ it well describes the spontaneous breaking of the global symmetries.
- ▶ it gives an easy way (complementary to the lattice) to make approximate non-perturbative calculations.
- it is fruitful in the case of QCD (the only known strongly coupled theory) ⇒ Natural to apply NJL to composite Higgs models.

Outlooks

- ► Calculation of top partners masses
- ▶ Generate the Higgs potential by gauging the SM group and realizing the partial compositeness for the top quark (add explicit breaking terms) \Rightarrow Small corrections to the masses of the resonances $\sim \mathcal{O}\left(m_h^2/M_M^2\right)$
- ▶ Apply NJL techniques to other UV completions (other cosets or other field contents)

Thanks for your attention

Backup

Diquarks and Baryons

Top partners quantum numbers

Under the global symmetry $SU(4) \times SU(6)$ the top partners (coloured triplets) transform as [Cacciapaglia et al '15]

$$(X\psi\psi)\sim(6,6)$$
 $(X\overline{\psi}\ \overline{\psi})\sim(\overline{6},6)$ $(X\overline{\psi}\psi)\sim(1,6)+(15,6)$

$$6_{SU(6)} = (3+\overline{3})_{SU(3)_c} \qquad (\square \times \square) \times \square = \square \times \square + \cdots = \bullet + \cdots$$

Diquarks

Maximal attractive channel: $V(\square \times \square) \sim -N/2$ $V(\square \times \square) \sim -1/4$

 \Rightarrow (X ψ) diquark more likely than ($\psi\psi$)

Baryon masses

Effective 4-fermion interaction between "quarks" and "di-quarks" (integrating out X fermion) in the Bethe-Salpeter equation leads to the propagators of physicals baryons.

 $\Rightarrow \underline{\text{Static approximation}} \equiv \text{baryon is mainly built from a "quark"}$ and a "diquark"

Decay constants

The calculation of decay constants is possible with NJL techniques

Pseudo-scalar (F_G) decay constant

 F_G ($\equiv f_{\pi}$ in QCD) describes the strength of the decay into SM particles \Rightarrow measure of the coupling to the broken currents

$$\langle 0|J^{\mu\hat{A}}|G^{\hat{B}}(\rho)\rangle=i
ho^{\mu}F_{G}\delta^{\hat{A}\hat{B}}$$

Vector (F_{ρ}) and Axial (F_A) decay constants

$$\langle 0|J^{\mu A}|
ho^B(
ho)
angle = F_
ho M_
ho \, arepsilon^\mu(
ho) \, \delta^{AB}, \qquad \langle 0|J^{\mu \hat{A}}|A^{\hat{B}}(
ho)
angle = F_A M_A \, arepsilon^\mu(
ho) \, \delta^{\hat{A}\hat{B}}$$