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Implications of Mt (and Mh) for vacuum stability

1. The metastability of the electroweak vacuum after the first LHC run

In the first LHC run we have learned that the Higgs boson exists; it is light, with mass Mh '
125 GeV [1]; and it has SM-like couplings (still with room for significant deviations). Moreover,
no trace of BSM physics has showed up, leading to bounds on the mass scale L of new physics in
the TeV range for the main BSM scenarios, supersymmetric or not. For those of us willing to hold
on to the naturalness paradigm, the hierarchy problem affecting electroweak symmetry breaking
implies that new physics should be around the corner, likely on the reach of the second LHC run.
However, it is also possible that naturalness has mislead us and we are just seeing evidence that
the SM is all there is up to very high energy scales, possibly up to L ⇠ MP. Figure 1 (left plot)
shows how the most relevant SM couplings evolve when extrapolated to very high scales [2]. It was
not guaranteed but the theory stays weakly coupled up to MP but it does. We see the three gauge
couplings almost unifying at µ ⇠ 1014 GeV. The top Yukawa coupling decreases at high energy
(due to as effects) and eventually becomes smaller than all gauge couplings. The Higgs quartic
coupling evolves in a very interesting way: it is small at the EW scale, l (Mt)⇠ 1/8, as the Higgs
boson is light, and it decreases when run to higher scales. The zoomed-in right plot in Fig. 1 shows
l becoming negative at µ ⇠ 1010 GeV.

The steep slope of l (µ) is caused by one-loop top corrections, that give the dominant contribu-
tion to bl = dl/d log µ , which dictates the evolution of l with scale. One has bl =�6y4

t /(16p2)+

... where yt is the sizable top Yukawa coupling. This dependence of bl on the fourth power of yt

explains the crucial sensitivity of the running of l on the top quark mass Mt , illustrated by the gray
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Figure 1: Left: Extrapolation of SM couplings from the Fermi scale to MPl. Right: Zoom-in on the evolution
of the Higgs quartic coupling, l (µ), for Mh = 125.7 GeV. The 3s uncertainties in Mt , as and Mh are shown
by the colored intervals as indicated. (Taken from Ref. [2]).
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Figure 1: Left: SM RG evolution of the gauge couplings g1 =
p

5/3g0, g2 = g, g3 = gs, of the
top and bottom Yukawa couplings (yt, yb), and of the Higgs quartic coupling �. All couplings are
defined in the MS scheme. The thickness indicates the ±1� uncertainty. Right: RG evolution of
� varying Mt, Mh and ↵s by ±3�.

the Yukawa sector and can be considered the first complete NNLO evaluation of ��(µ).

We stress that both these two-loop terms are needed to match the sizable two-loop scale

dependence of � around the weak scale, caused by the �32y4t g
2
s + 30y6t terms in its beta

function. As a result of this improved determination of ��(µ), we are able to obtain a

significant reduction of the theoretical error on Mh compared to previous works.

Putting all the NNLO ingredients together, we estimate an overall theory error on Mh of

±1.0GeV (see section 3). Our final results for the condition of absolute stability up to the

Planck scale is

Mh [GeV] > 129.4 + 1.4

✓

Mt [GeV]� 173.1

0.7

◆

� 0.5

✓

↵s(MZ)� 0.1184

0.0007

◆

± 1.0th . (2)

Combining in quadrature the theoretical uncertainty with the experimental errors on Mt and

↵s we get

Mh > 129.4± 1.8 GeV. (3)

From this result we conclude that vacuum stability of the SM up to the Planck scale is

excluded at 2� (98% C.L. one sided) for Mh < 126GeV.

Although the central values of Higgs and top masses do not favor a scenario with a

vanishing Higgs self coupling at the Planck scale (MPl) — a possibility originally proposed
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Inflation and the Higgs

Quantum fluctuations of the Higgs:
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Figure 4. Corrections beyond the leading one-dimensional approximation to the mass parameter
(left) and to the quartic coupling (right), in terms of the field S along the h-line for the same
scenario as in figure 3, with mt = 171.7GeV, λS = 3.82 · 10−13, λSH = 3.67 · 10−10, and m2

S =
−1.06·1026 GeV2. The left red points mark the beginning of observable inflation, and the right points
mark the end of inflation. The corrections to the mass and quartic parameters were estimated with
the tree-level potential, while the cosmological parameters were calculated with the RG-improved
effective potential. Notice that the corrections to the quartic coupling are much smaller than λS .

Equations (4.5) and (4.6) can be used, together with the tree-level formulae of the pre-

vious sections, to estimate the validity of the one-dimensional approximation for inflation

along the h-valley in the SMS. Doing so, we find that the approximation works with high

accuracy, as the corrections to the couplings (4.5) and (4.6) are many orders of magnitude

below the values obtained by simply considering the potential along the projection of the

bottom of the valley as a function of the length σ. Figure 4 shows the corrections evaluated

along the h-line (which, as shown in section 3.3, is a good approximation to the projection

of the valley’s floor for large h) at tree-level, for a concrete choice of parameters which

gives successful inflation. The peak in the size of the relative mass correction happens

when the valley potential crosses an inflection point, so that V ′′ = 0. Away from this peak

the relative corrections are very strongly suppressed.

4.2 Slow-roll approximation

In the one-dimensional and slow-roll approximation, we compute the primordial spectra

produced during inflation in terms of the first three slow-roll (potential) parameters ε, η

and ξ, defined as

ε =
M2

P

2

(
V ′

V

)2

, η = M2
P
V ′′

V
, ξ = M4

P
V ′V ′′′

V 2
, (4.7)

where MP = 1/
√
8πG # 2.435 · 1018GeV is the reduced Planck mass. In these expressions

the potential is understood to be evaluated along the projection of the bottom of a valley

in field space and, for simplicity, the primes denote derivatives with respect to the field

σ, which parametrizes the valley’s length. If the orthogonal corrections to the dynamics

and the primordial spectra where not negligible, we would need a two-field description

and similar parameters for the orthogonal direction as well, see e.g. [46]. However, as

– 20 –
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Inflation and the Higgs
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Fig. 1. Effective potential in the Einstein frame.

Analysis of the inflation in the Einstein frame 3 can
be performed in standard way using the slow-roll ap-
proximation. The slow roll parameters (in notations of
[28]) can be expressed analytically as functions of the
field h(χ) using (4) and (6) (in the limit of h2 !
M2

P /ξ ! v2),

ε =
M2

P

2

(

dU/dχ

U

)2

"
4M4

P

3ξ2h4
, (9)

η = M2
P

d2U/dχ2

U
" −

4M2
P

3ξh2
, (10)

ζ2 = M4
P

(d3U/dχ3)dU/dχ

U2
"

16M4
P

9ξ2h4
. (11)

Slow roll ends when ε " 1, so the field value at
the end of inflation is hend " (4/3)1/4MP /

√
ξ "

1.07MP/
√

ξ. The number of e-foldings for the change
of the field h from h0 to hend is given by

N =

h0
∫

hend

1

M2
P

U

dU/dh

(

dχ

dh

)2

dh "
6

8

h2
0 − h2

end

M2
P /ξ

.(12)

We see that for all values of
√

ξ ≪ 1017 the scale of
the Standard Model v does not enter in the formulae,
so the inflationary physics is independent on it. Since
interactions of the Higgs boson with the particles of
the SM after the end of inflation are strong, the re-
heating happens right after the slow-roll, and Treh "
( 2λ
π2g∗

)1/4MP /
√

ξ " 2×1015 GeV, where g∗ = 106.75
is the number of degrees of freedom of the SM. So,
the number of e-foldings for the the COBE scale enter-
ing the horizon NCOBE " 62 (see [28]) and hCOBE "
9.4MP/

√
ξ. Inserting (12) into the COBE normaliza-

tion U/ε = (0.027MP )4 we find the required value for
ξ

3 The same results can be obtained in the Jordan frame [26, 27].
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Fig. 2. The allowed WMAP region for inflationary parameters (r,
n). The green boxes are our predictions supposing 50 and 60 e–
foldings of inflation. Black and white dots are predictions of usual
chaotic inflation with λφ4 and m2φ2 potentials, HZ is the Har-
rison-Zeldovich spectrum.

ξ "

√

λ

3

NCOBE

0.0272
" 49000

√
λ = 49000

mH
√

2v
. (13)

Note, that if one could deduce ξ from some fundamen-
tal theory this relation would provide a connection be-
tween the Higgs mass and the amplitude of primordial
perturbations. The spectral index n = 1 − 6ε + 2η cal-
culated for N = 60 (corresponding to the scale k =
0.002/Mpc) is n " 1− 8(4N + 9)/(4N + 3)2 " 0.97.
The tensor to scalar perturbation ratio [8] is r = 16ε "
192/(4N+3)2 " 0.0033. The predicted values are well
within one sigma of the current WMAP measurements
[8], see Fig. 2.

3. Radiative corrections

An essential point for inflation is the flatness of
the scalar potential in the region of the field values
h ∼ 10MP/

√
ξ, what corresponds to the Einstein

frame field χ ∼ 6MP . It is important that radiative
corrections do not spoil this property. Of course, any
discussion of quantum corrections is flawed by the non-
renormalizable character of gravity, so the arguments
we present below are not rigorous.
There are two qualitatively different type of correc-

tions one can think about. The first one is related to the
quantum gravity contribution. It is conceivable to think
[29] that these terms are proportional to the energy den-
sity of the field χ rather than its value and are of the
order of magnitude U(χ)/M4

P ∼ λ/ξ2. They are small
at large ξ required by observations. Moreover, adding
non-renormalizable operators h4+2n/M2n

P to the La-
grangian (2) also does not change the flatness of the

3

Higgs inflation:
p
�g ⇠ h2 R ⇢ L

⇠ ⇠ 104

Bezrukov and Shaposhnikov arXiv:0710.3755



Can the inflaton stabilize the potential? 
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the appearance of the new scale in the stability conditions for the threshold mechanism

precludes stabilization and, therefore, a different mechanism is required. This could be

provided, for instance, by an additional heavy scalar that is stabilized at the origin. We

have checked that stabilizing the inflationary valleys in this way, the predictions for the

cosmological parameters (including loop corrections) remain extremely close to the tree-

level results with the SM plus the inflaton alone.

We also revisit the idea of Higgs false-vacuum inflation [25, 37], mentioned earlier, and

conclude that it cannot produce successful inflation for the measured values of the SM

couplings. A similar conclusion was already found in [26, 37], and we confirm that the

trouble is related to the tensor-to-scalar ratio r, as argued in [26]. An accurate evaluation

of the energy of the false vacua, compatible with the results of [4], yields a lower bound of

r ! 2 which excludes the result of [43], according to which a value of r compatible with

the latest measurements of Planck could be generated inside the false-vacuum valley.

The paper is organized as follows. In section 2 we introduce the model: the SM coupled

to a singlet through the Higgs portal with a Z2 symmetry, to be referred to as SMS. The

tree-level potential valleys are described in section 3, and the corresponding inflationary

dynamics is analyzed in detail in section 4, discussing the single-field and slow-roll approx-

imations and the generation of curvature perturbations. We devote section 5 to radiative

effects. In section 5.1 we review the RG-improved potential, emphasizing the importance

of the field-independent piece for cosmology. In section 5.2 we analyze the issue of the sta-

bility of the effective potential, and in section 5.3 we study the implications for inflation.

In section 5.4 we study if a coupling of the Higgs to the Ricci scalar can affect the stability

during inflation. In section 5.5, we revisit the scenario of false-vacuum inflation. The con-

clusions are drawn in section 6. In addition, three appendices are provided: section A gives

the two-loop RG equations that we use, section B reviews the matching of the relevant SM

parameters to experimental measurements, and section C contains the details about the

matching between the SM and SMS.

2 Standard Model coupled to a real scalar

We consider the SM coupled to a real singlet S, with a tree-level scalar potential given by

V tree(H,S; δi) = m2
HH†H +

m2
S

2
S2 +

λ

2
(H†H)2 +

λS
4!

S4 +
λSH
2

H†HS2 , (2.1)

where H is the Higgs SU(2) doublet. The symbol δi is used to denote generically the

couplings and squared masses of the model. This encompasses not only the couplings (λ, λS ,

λSH) and the masses (m2
H , m2

S) of the scalar potential (2.1), but also the Yukawa and gauge

couplings of the SM. If a Z2 symmetry is imposed, (2.1) is the most general renormalizable

potential for S and H, excluding an allowed vacuum energy term V0, which can be used

to accommodate the measured value of the cosmological constant Λ ∼ (10−3eV)4. For

practical purposes, we can assume Λ = 0, which does not change our results.5 As we will

5We assume that at the end of inflation the fields come to rest at a minimum of the potential corre-

sponding to the cosmological constant that we measure today. Since this value is many orders of magnitude

smaller than the energy scales involved during inflation we can safely take it to be zero.

– 5 –
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relevant potential is then given by (3.22) and (3.20) and can be written as

V (S) = ϑ
(
S2 − v2S

)2
, (4.29)

where ϑ > 0 is the dimensionless coupling

ϑ =
λS
4!

λ̃

λ
. (4.30)

This type of potential, with positive ϑ and v2S , has been studied in the context of inflation

in various works and is known to be capable of providing a good fit to Planck data, see

e.g. [53]. The potential (4.29) was probably first studied in [54] as a specific implementation

of slow-roll inflation (back then called as well new inflation). It was pointed out there that

a phase of accelerated expansion occurs if the symmetry breaking scale vS is of the order

of the Planck mass (or larger), see also [55, 56]. Later, it was also considered in [57–

59] and more recently in [60–63]. Here we will give a detailed analysis, including some

remarks about the slow-roll approximation and reheating, and discuss the implications for

the Standard Model of particle physics, extended with the singlet S.

Due to the Z2 symmetry of the potential (4.29), we can focus exclusively on the region

S ≥ 0 without loss of generality. The possible inflationary dynamics can be separated

in two cases that turn to give rather different predictions. The first one corresponds to

S < vS , with the inflaton rolling from smaller to larger values, and corresponds to a sort

of “hilltop” model [64]. The second case is S > vS , with Ṡ < 0 and may behave as a

(displaced) quartic or quadratic potential depending on the concrete values of ϑ and vS
and the field range. We will study in turn the two cases.

Both possibilities share a property that is useful to highlight now. Of the two pa-

rameters on which the potential depends, only vS determines the amount of inflation that

is produced. Since V is proportional to ϑ, the dependence on this parameter factors out

from any expression involving the potential slow-roll parameters, which are homogeneous

functions of V of degree zero, see (4.7). Therefore, the coupling ϑ does not affect the

prediction for the number of e-folds, as (4.17) shows. It does not intervene either in any of

the primordial parameters that we have defined, except As, see (4.8), and thus it can be

fixed solely from this number.

We will denote by S∗ the value of S for which a total of Ne inflationary e-folds are pro-

duced. Then, given v2S and S∗ such that the slow-roll parameters and Ne take appropriate

values, ϑ is determined by the amplitude of the scalar perturbations through the expression

ϑ = 192π2As
S2
∗M

6
P(

S2
∗ − v2S

)4 . (4.31)

The primordial scalar amplitude at k∗ = 0.05 Mpc−1 is approximately17

log(1010As) = 3.06± 0.03 (4.32)

17The precise central value and range depend on the concrete data set and assumptions on parameters [65].
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matching between the SM and SMS.

2 Standard Model coupled to a real scalar

We consider the SM coupled to a real singlet S, with a tree-level scalar potential given by

V tree(H,S; δi) = m2
HH†H +

m2
S

2
S2 +

λ

2
(H†H)2 +

λS
4!

S4 +
λSH
2

H†HS2 , (2.1)

where H is the Higgs SU(2) doublet. The symbol δi is used to denote generically the

couplings and squared masses of the model. This encompasses not only the couplings (λ, λS ,

λSH) and the masses (m2
H , m2

S) of the scalar potential (2.1), but also the Yukawa and gauge

couplings of the SM. If a Z2 symmetry is imposed, (2.1) is the most general renormalizable

potential for S and H, excluding an allowed vacuum energy term V0, which can be used

to accommodate the measured value of the cosmological constant Λ ∼ (10−3eV)4. For

practical purposes, we can assume Λ = 0, which does not change our results.5 As we will

5We assume that at the end of inflation the fields come to rest at a minimum of the potential corre-

sponding to the cosmological constant that we measure today. Since this value is many orders of magnitude

smaller than the energy scales involved during inflation we can safely take it to be zero.
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consider are mt, m2
S , λS and λSH . Since we restrict the parameter space of the high energy

model to the region which reproduces the measured Higgs mass, the Higgs quartic and

quadratic couplings in the SMS are not independent of the parameters m2
S ,λS and λSH .

Given the decoupling of the singlet at low energies, in order to match the SM and

the SMS one should demand the equality of the flat spacetime Green functions computed

on both sides of the threshold at which the heavy singlet decouples. When it comes

to the parameters in the scalar potential V (which encodes the Green functions at zero

momentum) the decoupling of S amounts to integrating it out using the zero-momentum

equation of motion. This means that at sufficiently low scales, when quantum fluctuations

of the singlet are suppressed, the field S sits (on average) at the value which minimizes

the potential energy for every h ≡
√
2H0, where H0 is the neutral component of the Higgs

doublet. As mentioned before, we are going to assume that m2
S < 0, which means that

this minimum happens for S2 #= 0. Notice that in principle the Higgs field could also be

stabilized with m2
S > 0 (with S = 0 at the minimum), but in this case the valley supporting

inflation would not extend to large values of h. Inflation would then be exclusively driven

by the field S alone (as in a standard independent single-field model) with no role played

by the Higgs.6 We will later see that for m2
S < 0 successful inflation is actually mostly

driven by S as well, however the couplings of the effective potential that drives inflation in

a single field approximation to the dynamics are affected by those of the Higgs in that case.

After these considerations, the matching of the parameters in the potential can be

done in practice by considering the potential V when the field S is set at the value Smin

that satisfies
dV

dS

∣∣∣∣
S=Smin(h)

= 0 , (2.2)

and demanding

V SM (h; δ̃) = V (h, Smin(h); δ) +O(h6/|m2
S |). (2.3)

In other words, the (one-dimensional) potential in the SM should be understood as the

value of the SMS potential along a line which follows the minima with respect to the field

S. This is the usual basic procedure for integrating out the heavy field at low-energies.

Notice that we denote SM quantities (low-energy) with a tilde to distinguish them from

the SMS ones (high-energy). As indicated, the equality in (2.3) is valid up to terms that

are suppressed by inverse powers of the heavy mass, corresponding to non-renormalizable

terms in a polynomial expansion of the SMS potential.

At tree-level, and writing the SM potential as

V SM = m̃2
H H†H +

λ̃

2
(H†H)2 , (2.4)

taking derivatives of (2.3) with respect to the fields gives the following matching conditions,

m̃2
H = m2

H − 3λSH
λS

m2
S , λ̃ = λ− 3λ2SH

λS
, (2.5)

6If m2
S > 0, successful inflation in the SMS with S playing the role of the inflation would then addition-

ally require a non-minimal coupling to gravity, in order to satisfy current CMB limits [39] on primordial

gravitational waves.
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driven by S as well, however the couplings of the effective potential that drives inflation in
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S |). (2.3)

In other words, the (one-dimensional) potential in the SM should be understood as the

value of the SMS potential along a line which follows the minima with respect to the field

S. This is the usual basic procedure for integrating out the heavy field at low-energies.

Notice that we denote SM quantities (low-energy) with a tilde to distinguish them from

the SMS ones (high-energy). As indicated, the equality in (2.3) is valid up to terms that

are suppressed by inverse powers of the heavy mass, corresponding to non-renormalizable

terms in a polynomial expansion of the SMS potential.

At tree-level, and writing the SM potential as
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H H†H +

λ̃

2
(H†H)2 , (2.4)

taking derivatives of (2.3) with respect to the fields gives the following matching conditions,

m̃2
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H − 3λSH
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m2
S , λ̃ = λ− 3λ2SH

λS
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6If m2
S > 0, successful inflation in the SMS with S playing the role of the inflation would then addition-

ally require a non-minimal coupling to gravity, in order to satisfy current CMB limits [39] on primordial
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3.2 Line of S minima

In section 2 it was explained that the SM potential can be viewed as the potential of the

SMS along a line which follows the minima of the heavy field S. This S-line therefore solves

the equation ∂V/∂S = 0 and is described at tree-level by the curve

λS S2 + 3λSH h2 + 6m2
S = 0 , (3.16)

which defines a conic section in field space.12 Substituting (3.16) back into (2.3) and its

derivatives with respect to h, and using the appropriate expressions for the potentials

at each side of the threshold, yields the matching relations of (2.5) and (2.6).13 We can

identify the S-line (3.16) with the bottom of a valley (as defined in the previous section) for

values of h2 that are sufficiently small, because in that limit the S-direction in field space

becomes orthogonal to the line, and (3.3) becomes equivalent to the equation for the S-line,

∂V/∂S = 0. In other words, we can integrate out the field S when it defines a direction

that is orthogonal to the line along which we reconstruct the low-energy potential. For

instance, if |λSH | ∼ 1 the identification with a valley is valid for values of h2 smaller than

roughly |m2
S |. Then, performing the matching at scales smaller than |m2

S |1/2 is consistent.

In order to see this in more detail, and study how closely the S-line follows the bottom

of an actual valley, we can resort to (3.15). From (3.16), along the S-line we have

dS

dh
= −3λSH

λS

h

S
. (3.17)

It then follows that for very small h the S-line is parallel to the h-axis, so that the l.h.s.

of (3.15) tends to zero and the S-line is a very good approximation to the projection of

an actual valley floor. As h grows, the S-line bends towards the h-axis, and its normal

becomes increasingly parallel to it. This makes the curve get distorted with respect to the

projection of the bottom of the true valley (3.10). For values of h that are not too large,

the deviation along the normal, δS , can be estimated from (3.15). For very large values of

h the S-line will be nowhere near the projection of the bottom of the true valley. In other

words, as δS increases the S-line stops being a good approximation to the actual valley.

The reason why this happens is that the normal derivative becomes increasingly affected by

the Higgs quartic coupling, so that the valley bends until it stops being a valley when the

normal derivatives cannot become zero near the S-line; see the schematic representations of

figures 1b, 1c. The point at which the valley ends, and thus cannot trap fields any longer,

can be estimated to be the one at which δS becomes of the order of the smallest of the

fields, which for large VEVS of S will typically be h. Solving for δS ∼ h in (3.15) yields,

to lowest order in λSH ,

h
6

max ∼ 25λS

3λ̃2λ2SH

∣∣m2
S

∣∣3 . (3.18)

This behavior is illustrated in figure 2, obtained by solving (3.3) numerically, which clearly

shows the growth of δS with h.

12Clearly, in the limit λSH = 0 the line (3.16) collapses to the valley (3.10).
13See appendix C for more details on the matching procedure, including radiative corrections.
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Figure 2. Relative correction to the valley’s location with respect to the S-line, parametrized in
terms of h, for mt = 171.7GeV, λS = 3.82 · 10−13, λSH = 3.67 · 10−10, m2

S = −1.06 · 1026 GeV2.
The S-valley ends near h = 3 · 1014 GeV.

3.3 Line of h minima

We consider now the h-line, satisfying (3.11), i.e. ∂V/∂h = 0. The tree-level solution is

λh2 + λSH S2 + 2m2
H = 0 . (3.21)

For λSH > 0, and in the quadrant h ≥ 0, S ≥ 0, the h-line extends through the region

limited by 0 ≤ S2 ≤ −2m2
H/λSH and −2m2

H/λ ≥ h2 ≥ 0. Note that in this case the

vacuum in the h-direction for S = 0 can correspond to a value of the field much larger than

the Higgs VEV, since |m2
H | in the SMS will typically be of the order of |m2

S | $ |m̃2
H |, as

follows from the SM matching condition (2.5). In the case λSH < 0 the valley extends for

S ≥ −2m2
H/λSH , never touching the h axis, see figure 1c.

It is straightforward to check that the resulting potential for the h-line can be written

in terms of the one along the S-line, as a function of either S or h:

Vh(h) =

(
1 + λ̃

λS
3λ2SH

)
VS(h) , Vh(S) =

(
1 + λ̃

λS
3λ2SH

)−1

VS(S) , (3.22)

where VS(h) and VS(S) are given by (3.19) and (3.20), respectively.

As in the case of the S-line, the projections of the potential along the h-line onto

the coordinate planes (see figures 1b and 1c) give Mexican hat potentials, which should be

obvious from (3.2). These projections are proportional to their S-line counterparts (at tree-

level), as it is clear from the prefactors of (3.22). They are represented as dotted blue lines in

figures 1b and 1c. The projection of the h-line on the vertical plane with h = 0 is shallower

than its S-line counterpart, whereas the projection on the plane with S = 0 grows faster for

large h, where the quartic coupling dominates. The figures also illustrate the fact that the

potential along the h-line as a function of S is given by the hilltop-like part of the Mexican

hat for λSH > 0, and by the steeper quartic-like (at sufficiently large S) for λSH < 0.
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the appearance of the new scale in the stability conditions for the threshold mechanism

precludes stabilization and, therefore, a different mechanism is required. This could be

provided, for instance, by an additional heavy scalar that is stabilized at the origin. We

have checked that stabilizing the inflationary valleys in this way, the predictions for the

cosmological parameters (including loop corrections) remain extremely close to the tree-

level results with the SM plus the inflaton alone.

We also revisit the idea of Higgs false-vacuum inflation [25, 37], mentioned earlier, and

conclude that it cannot produce successful inflation for the measured values of the SM

couplings. A similar conclusion was already found in [26, 37], and we confirm that the

trouble is related to the tensor-to-scalar ratio r, as argued in [26]. An accurate evaluation

of the energy of the false vacua, compatible with the results of [4], yields a lower bound of

r ! 2 which excludes the result of [43], according to which a value of r compatible with

the latest measurements of Planck could be generated inside the false-vacuum valley.

The paper is organized as follows. In section 2 we introduce the model: the SM coupled

to a singlet through the Higgs portal with a Z2 symmetry, to be referred to as SMS. The

tree-level potential valleys are described in section 3, and the corresponding inflationary

dynamics is analyzed in detail in section 4, discussing the single-field and slow-roll approx-

imations and the generation of curvature perturbations. We devote section 5 to radiative

effects. In section 5.1 we review the RG-improved potential, emphasizing the importance

of the field-independent piece for cosmology. In section 5.2 we analyze the issue of the sta-

bility of the effective potential, and in section 5.3 we study the implications for inflation.

In section 5.4 we study if a coupling of the Higgs to the Ricci scalar can affect the stability

during inflation. In section 5.5, we revisit the scenario of false-vacuum inflation. The con-

clusions are drawn in section 6. In addition, three appendices are provided: section A gives

the two-loop RG equations that we use, section B reviews the matching of the relevant SM

parameters to experimental measurements, and section C contains the details about the

matching between the SM and SMS.

2 Standard Model coupled to a real scalar

We consider the SM coupled to a real singlet S, with a tree-level scalar potential given by

V tree(H,S; δi) = m2
HH†H +

m2
S

2
S2 +

λ

2
(H†H)2 +

λS
4!

S4 +
λSH
2

H†HS2 , (2.1)

where H is the Higgs SU(2) doublet. The symbol δi is used to denote generically the

couplings and squared masses of the model. This encompasses not only the couplings (λ, λS ,

λSH) and the masses (m2
H , m2

S) of the scalar potential (2.1), but also the Yukawa and gauge

couplings of the SM. If a Z2 symmetry is imposed, (2.1) is the most general renormalizable

potential for S and H, excluding an allowed vacuum energy term V0, which can be used

to accommodate the measured value of the cosmological constant Λ ∼ (10−3eV)4. For

practical purposes, we can assume Λ = 0, which does not change our results.5 As we will

5We assume that at the end of inflation the fields come to rest at a minimum of the potential corre-

sponding to the cosmological constant that we measure today. Since this value is many orders of magnitude

smaller than the energy scales involved during inflation we can safely take it to be zero.
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range of Higgs and top quark masses [4, 12]. This effect may also change qualitatively the

potential around the lines of minima in the SMS, the h- and S-lines that were described in

section 3. In particular, it may destabilize the h-valley, that was shown to be able support

inflation at tree-level. Naively, this could ruin the possibility of obtaining inflation, as the

energy density could become negative inside the valley were the field should roll. Since

the valley acts as an attractor for the dynamics of fields rolling in its vicinity, inflation

would then have to be discarded for initial conditions in a wide region around the valley.

In addition to this geometrical effect, there is also the crucial issue of large quantum

fluctuations of the Higgs field induced by inflation, which can displace it directly into the

instability region. It is therefore important to know under which conditions a potential

SM instability can be cured in the SMS, which we analyze now.

For values of S below the VEV of S in the Higgs vacuum, and in the limit in which h

is larger than the other mass scales, a well motivated choice for the renormalization scale

is µ ∼ h [29]. Then, using the tree-level potential, neglecting terms other than the quartic

Higgs coupling and ignoring the field-renormalization factor, we have that for S = 0

∂V

∂h
" 1

2

(
λ(h) +

1

4
βλ(h)

)
h3 . (5.15)

For βλ(h) < 0, which causes λ(h) to be a decreasing function, the derivative of the potential

can become negative at high enough values of h, triggering an instability. In the SM, for

mt = 173.15GeV and mh = 125.09GeV, after matching the experimental measurements

to the SM parameters as detailed in appendix B, the scale at which the potential becomes

negative is around ΛI ∼ 5·1011GeV. This effect is absent in the other two quartic couplings

of the SMS, since their beta functions lack the top-Yukawa driven contributions present in

λ. Indeed, the one-loop beta functions in the SMS are the following:

βλ =
1

16π2

[
−12y4t + λ

(
−9

5
g21 − 9g22 + 12y2t

)
+

27

100
g41 +

9

10
g22g

2
1 +

9

4
g42 + 12λ2 + λ2SH

]
,

(5.16)

βλS =
1

16π2
[
3λ2S + 12λ2SH

]
, (5.17)

βλSH =
1

16π2

[
λSH

(
− 9

10
g21 −

9

2
g22 + 6λ+ λS + 6y2t

)
+ 4λ2SH

]
. (5.18)

Notice that the negative contribution to βλ coming from y4t may in principle be compensated

by λ2SH (and this possibility is of course absent in the SM). However, this will typically

require rather large values of λSH .

If the S- and h-lines of minima extend to values of h that are large enough to sense the

instability, there will be a value of the top quark mass, mt, above which the potential along

them will end up developing a runaway behavior. It will be seen in the next section that

for the large values of vS needed for successful tree-level inflation along the h-valley, see

section 4.4, small values of λSH suffice to make the h-valley reach values of h larger than

the instability scale. The lower bound of λSH for which this happen is given by (5.29).

An example is provided by the choice of parameters shown in figures 3 and 4, for which

inflation takes place at tree-level for h > 1014GeV with λSH ∼ 10−10.
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range of Higgs and top quark masses [4, 12]. This effect may also change qualitatively the

potential around the lines of minima in the SMS, the h- and S-lines that were described in

section 3. In particular, it may destabilize the h-valley, that was shown to be able support

inflation at tree-level. Naively, this could ruin the possibility of obtaining inflation, as the

energy density could become negative inside the valley were the field should roll. Since

the valley acts as an attractor for the dynamics of fields rolling in its vicinity, inflation

would then have to be discarded for initial conditions in a wide region around the valley.

In addition to this geometrical effect, there is also the crucial issue of large quantum

fluctuations of the Higgs field induced by inflation, which can displace it directly into the

instability region. It is therefore important to know under which conditions a potential

SM instability can be cured in the SMS, which we analyze now.

For values of S below the VEV of S in the Higgs vacuum, and in the limit in which h

is larger than the other mass scales, a well motivated choice for the renormalization scale

is µ ∼ h [29]. Then, using the tree-level potential, neglecting terms other than the quartic

Higgs coupling and ignoring the field-renormalization factor, we have that for S = 0

∂V
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1

4
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h3 . (5.15)

For βλ(h) < 0, which causes λ(h) to be a decreasing function, the derivative of the potential

can become negative at high enough values of h, triggering an instability. In the SM, for

mt = 173.15GeV and mh = 125.09GeV, after matching the experimental measurements

to the SM parameters as detailed in appendix B, the scale at which the potential becomes

negative is around ΛI ∼ 5·1011GeV. This effect is absent in the other two quartic couplings

of the SMS, since their beta functions lack the top-Yukawa driven contributions present in

λ. Indeed, the one-loop beta functions in the SMS are the following:
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1
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+
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,
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1

16π2
[
3λ2S + 12λ2SH
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, (5.17)
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1

16π2

[
λSH
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− 9

10
g21 −

9

2
g22 + 6λ+ λS + 6y2t

)
+ 4λ2SH

]
. (5.18)

Notice that the negative contribution to βλ coming from y4t may in principle be compensated

by λ2SH (and this possibility is of course absent in the SM). However, this will typically

require rather large values of λSH .

If the S- and h-lines of minima extend to values of h that are large enough to sense the

instability, there will be a value of the top quark mass, mt, above which the potential along

them will end up developing a runaway behavior. It will be seen in the next section that

for the large values of vS needed for successful tree-level inflation along the h-valley, see

section 4.4, small values of λSH suffice to make the h-valley reach values of h larger than

the instability scale. The lower bound of λSH for which this happen is given by (5.29).

An example is provided by the choice of parameters shown in figures 3 and 4, for which

inflation takes place at tree-level for h > 1014GeV with λSH ∼ 10−10.
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In addition to this geometrical effect, there is also the crucial issue of large quantum

fluctuations of the Higgs field induced by inflation, which can displace it directly into the

instability region. It is therefore important to know under which conditions a potential

SM instability can be cured in the SMS, which we analyze now.
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is larger than the other mass scales, a well motivated choice for the renormalization scale
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For βλ(h) < 0, which causes λ(h) to be a decreasing function, the derivative of the potential

can become negative at high enough values of h, triggering an instability. In the SM, for

mt = 173.15GeV and mh = 125.09GeV, after matching the experimental measurements

to the SM parameters as detailed in appendix B, the scale at which the potential becomes

negative is around ΛI ∼ 5·1011GeV. This effect is absent in the other two quartic couplings
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Notice that the negative contribution to βλ coming from y4t may in principle be compensated

by λ2SH (and this possibility is of course absent in the SM). However, this will typically

require rather large values of λSH .

If the S- and h-lines of minima extend to values of h that are large enough to sense the

instability, there will be a value of the top quark mass, mt, above which the potential along

them will end up developing a runaway behavior. It will be seen in the next section that

for the large values of vS needed for successful tree-level inflation along the h-valley, see

section 4.4, small values of λSH suffice to make the h-valley reach values of h larger than

the instability scale. The lower bound of λSH for which this happen is given by (5.29).

An example is provided by the choice of parameters shown in figures 3 and 4, for which

inflation takes place at tree-level for h > 1014GeV with λSH ∼ 10−10.
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the appearance of the new scale in the stability conditions for the threshold mechanism

precludes stabilization and, therefore, a different mechanism is required. This could be

provided, for instance, by an additional heavy scalar that is stabilized at the origin. We

have checked that stabilizing the inflationary valleys in this way, the predictions for the

cosmological parameters (including loop corrections) remain extremely close to the tree-

level results with the SM plus the inflaton alone.

We also revisit the idea of Higgs false-vacuum inflation [25, 37], mentioned earlier, and

conclude that it cannot produce successful inflation for the measured values of the SM

couplings. A similar conclusion was already found in [26, 37], and we confirm that the

trouble is related to the tensor-to-scalar ratio r, as argued in [26]. An accurate evaluation

of the energy of the false vacua, compatible with the results of [4], yields a lower bound of

r ! 2 which excludes the result of [43], according to which a value of r compatible with

the latest measurements of Planck could be generated inside the false-vacuum valley.

The paper is organized as follows. In section 2 we introduce the model: the SM coupled

to a singlet through the Higgs portal with a Z2 symmetry, to be referred to as SMS. The

tree-level potential valleys are described in section 3, and the corresponding inflationary

dynamics is analyzed in detail in section 4, discussing the single-field and slow-roll approx-

imations and the generation of curvature perturbations. We devote section 5 to radiative

effects. In section 5.1 we review the RG-improved potential, emphasizing the importance

of the field-independent piece for cosmology. In section 5.2 we analyze the issue of the sta-

bility of the effective potential, and in section 5.3 we study the implications for inflation.

In section 5.4 we study if a coupling of the Higgs to the Ricci scalar can affect the stability

during inflation. In section 5.5, we revisit the scenario of false-vacuum inflation. The con-

clusions are drawn in section 6. In addition, three appendices are provided: section A gives

the two-loop RG equations that we use, section B reviews the matching of the relevant SM

parameters to experimental measurements, and section C contains the details about the

matching between the SM and SMS.

2 Standard Model coupled to a real scalar

We consider the SM coupled to a real singlet S, with a tree-level scalar potential given by

V tree(H,S; δi) = m2
HH†H +

m2
S

2
S2 +

λ

2
(H†H)2 +

λS
4!

S4 +
λSH
2

H†HS2 , (2.1)

where H is the Higgs SU(2) doublet. The symbol δi is used to denote generically the

couplings and squared masses of the model. This encompasses not only the couplings (λ, λS ,

λSH) and the masses (m2
H , m2

S) of the scalar potential (2.1), but also the Yukawa and gauge

couplings of the SM. If a Z2 symmetry is imposed, (2.1) is the most general renormalizable

potential for S and H, excluding an allowed vacuum energy term V0, which can be used

to accommodate the measured value of the cosmological constant Λ ∼ (10−3eV)4. For

practical purposes, we can assume Λ = 0, which does not change our results.5 As we will

5We assume that at the end of inflation the fields come to rest at a minimum of the potential corre-

sponding to the cosmological constant that we measure today. Since this value is many orders of magnitude

smaller than the energy scales involved during inflation we can safely take it to be zero.
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consider are mt, m2
S , λS and λSH . Since we restrict the parameter space of the high energy

model to the region which reproduces the measured Higgs mass, the Higgs quartic and

quadratic couplings in the SMS are not independent of the parameters m2
S ,λS and λSH .

Given the decoupling of the singlet at low energies, in order to match the SM and

the SMS one should demand the equality of the flat spacetime Green functions computed

on both sides of the threshold at which the heavy singlet decouples. When it comes

to the parameters in the scalar potential V (which encodes the Green functions at zero

momentum) the decoupling of S amounts to integrating it out using the zero-momentum

equation of motion. This means that at sufficiently low scales, when quantum fluctuations

of the singlet are suppressed, the field S sits (on average) at the value which minimizes

the potential energy for every h ≡
√
2H0, where H0 is the neutral component of the Higgs

doublet. As mentioned before, we are going to assume that m2
S < 0, which means that

this minimum happens for S2 #= 0. Notice that in principle the Higgs field could also be

stabilized with m2
S > 0 (with S = 0 at the minimum), but in this case the valley supporting

inflation would not extend to large values of h. Inflation would then be exclusively driven

by the field S alone (as in a standard independent single-field model) with no role played

by the Higgs.6 We will later see that for m2
S < 0 successful inflation is actually mostly

driven by S as well, however the couplings of the effective potential that drives inflation in

a single field approximation to the dynamics are affected by those of the Higgs in that case.

After these considerations, the matching of the parameters in the potential can be

done in practice by considering the potential V when the field S is set at the value Smin

that satisfies
dV

dS

∣∣∣∣
S=Smin(h)

= 0 , (2.2)

and demanding

V SM (h; δ̃) = V (h, Smin(h); δ) +O(h6/|m2
S |). (2.3)

In other words, the (one-dimensional) potential in the SM should be understood as the

value of the SMS potential along a line which follows the minima with respect to the field

S. This is the usual basic procedure for integrating out the heavy field at low-energies.

Notice that we denote SM quantities (low-energy) with a tilde to distinguish them from

the SMS ones (high-energy). As indicated, the equality in (2.3) is valid up to terms that

are suppressed by inverse powers of the heavy mass, corresponding to non-renormalizable

terms in a polynomial expansion of the SMS potential.

At tree-level, and writing the SM potential as

V SM = m̃2
H H†H +

λ̃

2
(H†H)2 , (2.4)

taking derivatives of (2.3) with respect to the fields gives the following matching conditions,

m̃2
H = m2

H − 3λSH
λS

m2
S , λ̃ = λ− 3λ2SH

λS
, (2.5)

6If m2
S > 0, successful inflation in the SMS with S playing the role of the inflation would then addition-

ally require a non-minimal coupling to gravity, in order to satisfy current CMB limits [39] on primordial

gravitational waves.
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Stability bounds are usually obtained by demanding absolute stability, i.e. that the

potential does not become smaller than the Higgs vacuum anywhere. Therefore, for the

discussion that follows, we will say that the potential is stable if the minimum correspond-

ing to the Higgs vacuum is the one of lowest potential energy and if the potential does not

develop a runaway behaviour in any direction in field space. If there are other vacua (dif-

ferent from the Higgs one) with higher energy, those minima will be unstable with respect

to the Higgs vacuum (since tunneling to lower energies is always possible, in principle) but

the potential as a whole is deemed stable. By Higgs vacuum we normally refer to the min-

imum of the potential which corresponds to the standard electroweak symmetry breaking

vacuum with v = 246GeV in the low-energy model. Since we arranged for the Higgs vac-

uum to have zero cosmological constant (because for our purposes this makes no practical

difference), the condition of absolute stability is equivalent to requiring that the potential

should be positive (or zero) at all points. With this criterion, we recall that the instability

scale, ΛI , can be defined in the SM with the value of µ = h at which the potential of the

Higgs crosses zero towards negative values, i.e. ΛI ! 5 · 1011GeV as mentioned before.

The stability in the SMS was already discussed in [28, 29]. It was found there that in

addition to the possible stabilizing effect of λSH via the RG running that we mentioned

above, there is a tree-level effect which may be sufficient on its own to guarantee stability

at large h values. The threshold correction

δth = 3
λ2SH
λS

(5.19)

appearing in the matching of the Higgs quartic coupling, see (2.5) and (3.22), plays a key

role in this mechanism.

Concretely, it was argued in [28, 29] that any potential with λSH > 0 (which is the case

of interest for us) can be stabilized by a sufficiently large δth, provided that |m2
S | is smaller

than (roughly) the instability scale (squared) at which the (low-energy) potential becomes

negative. Being careful with factors involving dimensionless couplings, the threshold effect

would stabilize the potential if the scale

Λ2
th ∼ 6

λSH
λSλ

|m2
S | (5.20)

is smaller than Λλ, which is the scale at which the quartic coupling λ̃ becomes negative.18

It was concluded in [29] that in order to have absolute stability from this mechanism, the

quartic coupling λ(µ) should satisfy the following condition19

λ(µ) >

{
δth

0
for

µ ! Λth

µ # Λth

. (5.21)

18The SM instability scale, ΛI , is larger than Λλ. At one-loop order in perturbation theory and taking

the physical Higgs and top masses to be mh = 125.09GeV and mt = 173.15GeV we find ΛI = 5 ·1011 GeV,

whereas Λλ = 8 · 1010 GeV. Clearly, the physically meaningful scale for the stability is ΛI , and the scale Λλ

appears as a consequence of using the approximation of the (RG-improved) tree-level potential.
19In [29] the condition was actually formulated assuming Λth ∼ |m2

S |1/2. Note that this only holds if

6λSH ∼ λSλ, but the meaning of the two scales is different in general. While |m2
S |1/2 gives an estimate of

the regime of validity of the SM (as a low-energy theory), the scale Λth puts a bound to the range where

λ > δth is needed for stability.
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the appearance of the new scale in the stability conditions for the threshold mechanism

precludes stabilization and, therefore, a different mechanism is required. This could be

provided, for instance, by an additional heavy scalar that is stabilized at the origin. We

have checked that stabilizing the inflationary valleys in this way, the predictions for the

cosmological parameters (including loop corrections) remain extremely close to the tree-

level results with the SM plus the inflaton alone.

We also revisit the idea of Higgs false-vacuum inflation [25, 37], mentioned earlier, and

conclude that it cannot produce successful inflation for the measured values of the SM

couplings. A similar conclusion was already found in [26, 37], and we confirm that the

trouble is related to the tensor-to-scalar ratio r, as argued in [26]. An accurate evaluation

of the energy of the false vacua, compatible with the results of [4], yields a lower bound of

r ! 2 which excludes the result of [43], according to which a value of r compatible with

the latest measurements of Planck could be generated inside the false-vacuum valley.

The paper is organized as follows. In section 2 we introduce the model: the SM coupled

to a singlet through the Higgs portal with a Z2 symmetry, to be referred to as SMS. The

tree-level potential valleys are described in section 3, and the corresponding inflationary

dynamics is analyzed in detail in section 4, discussing the single-field and slow-roll approx-

imations and the generation of curvature perturbations. We devote section 5 to radiative

effects. In section 5.1 we review the RG-improved potential, emphasizing the importance

of the field-independent piece for cosmology. In section 5.2 we analyze the issue of the sta-

bility of the effective potential, and in section 5.3 we study the implications for inflation.

In section 5.4 we study if a coupling of the Higgs to the Ricci scalar can affect the stability

during inflation. In section 5.5, we revisit the scenario of false-vacuum inflation. The con-

clusions are drawn in section 6. In addition, three appendices are provided: section A gives

the two-loop RG equations that we use, section B reviews the matching of the relevant SM

parameters to experimental measurements, and section C contains the details about the

matching between the SM and SMS.

2 Standard Model coupled to a real scalar

We consider the SM coupled to a real singlet S, with a tree-level scalar potential given by

V tree(H,S; δi) = m2
HH†H +

m2
S

2
S2 +

λ

2
(H†H)2 +

λS
4!

S4 +
λSH
2

H†HS2 , (2.1)

where H is the Higgs SU(2) doublet. The symbol δi is used to denote generically the

couplings and squared masses of the model. This encompasses not only the couplings (λ, λS ,

λSH) and the masses (m2
H , m2

S) of the scalar potential (2.1), but also the Yukawa and gauge

couplings of the SM. If a Z2 symmetry is imposed, (2.1) is the most general renormalizable

potential for S and H, excluding an allowed vacuum energy term V0, which can be used

to accommodate the measured value of the cosmological constant Λ ∼ (10−3eV)4. For

practical purposes, we can assume Λ = 0, which does not change our results.5 As we will

5We assume that at the end of inflation the fields come to rest at a minimum of the potential corre-

sponding to the cosmological constant that we measure today. Since this value is many orders of magnitude

smaller than the energy scales involved during inflation we can safely take it to be zero.
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consider are mt, m2
S , λS and λSH . Since we restrict the parameter space of the high energy

model to the region which reproduces the measured Higgs mass, the Higgs quartic and

quadratic couplings in the SMS are not independent of the parameters m2
S ,λS and λSH .

Given the decoupling of the singlet at low energies, in order to match the SM and

the SMS one should demand the equality of the flat spacetime Green functions computed

on both sides of the threshold at which the heavy singlet decouples. When it comes

to the parameters in the scalar potential V (which encodes the Green functions at zero

momentum) the decoupling of S amounts to integrating it out using the zero-momentum

equation of motion. This means that at sufficiently low scales, when quantum fluctuations

of the singlet are suppressed, the field S sits (on average) at the value which minimizes

the potential energy for every h ≡
√
2H0, where H0 is the neutral component of the Higgs

doublet. As mentioned before, we are going to assume that m2
S < 0, which means that

this minimum happens for S2 #= 0. Notice that in principle the Higgs field could also be

stabilized with m2
S > 0 (with S = 0 at the minimum), but in this case the valley supporting

inflation would not extend to large values of h. Inflation would then be exclusively driven

by the field S alone (as in a standard independent single-field model) with no role played

by the Higgs.6 We will later see that for m2
S < 0 successful inflation is actually mostly

driven by S as well, however the couplings of the effective potential that drives inflation in

a single field approximation to the dynamics are affected by those of the Higgs in that case.

After these considerations, the matching of the parameters in the potential can be

done in practice by considering the potential V when the field S is set at the value Smin

that satisfies
dV

dS

∣∣∣∣
S=Smin(h)

= 0 , (2.2)

and demanding

V SM (h; δ̃) = V (h, Smin(h); δ) +O(h6/|m2
S |). (2.3)

In other words, the (one-dimensional) potential in the SM should be understood as the

value of the SMS potential along a line which follows the minima with respect to the field

S. This is the usual basic procedure for integrating out the heavy field at low-energies.

Notice that we denote SM quantities (low-energy) with a tilde to distinguish them from

the SMS ones (high-energy). As indicated, the equality in (2.3) is valid up to terms that

are suppressed by inverse powers of the heavy mass, corresponding to non-renormalizable

terms in a polynomial expansion of the SMS potential.

At tree-level, and writing the SM potential as

V SM = m̃2
H H†H +

λ̃

2
(H†H)2 , (2.4)

taking derivatives of (2.3) with respect to the fields gives the following matching conditions,

m̃2
H = m2

H − 3λSH
λS

m2
S , λ̃ = λ− 3λ2SH

λS
, (2.5)

6If m2
S > 0, successful inflation in the SMS with S playing the role of the inflation would then addition-

ally require a non-minimal coupling to gravity, in order to satisfy current CMB limits [39] on primordial

gravitational waves.
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Stability bounds are usually obtained by demanding absolute stability, i.e. that the

potential does not become smaller than the Higgs vacuum anywhere. Therefore, for the

discussion that follows, we will say that the potential is stable if the minimum correspond-

ing to the Higgs vacuum is the one of lowest potential energy and if the potential does not

develop a runaway behaviour in any direction in field space. If there are other vacua (dif-

ferent from the Higgs one) with higher energy, those minima will be unstable with respect

to the Higgs vacuum (since tunneling to lower energies is always possible, in principle) but

the potential as a whole is deemed stable. By Higgs vacuum we normally refer to the min-

imum of the potential which corresponds to the standard electroweak symmetry breaking

vacuum with v = 246GeV in the low-energy model. Since we arranged for the Higgs vac-

uum to have zero cosmological constant (because for our purposes this makes no practical

difference), the condition of absolute stability is equivalent to requiring that the potential

should be positive (or zero) at all points. With this criterion, we recall that the instability

scale, ΛI , can be defined in the SM with the value of µ = h at which the potential of the

Higgs crosses zero towards negative values, i.e. ΛI ! 5 · 1011GeV as mentioned before.

The stability in the SMS was already discussed in [28, 29]. It was found there that in

addition to the possible stabilizing effect of λSH via the RG running that we mentioned

above, there is a tree-level effect which may be sufficient on its own to guarantee stability

at large h values. The threshold correction

δth = 3
λ2SH
λS

(5.19)

appearing in the matching of the Higgs quartic coupling, see (2.5) and (3.22), plays a key

role in this mechanism.

Concretely, it was argued in [28, 29] that any potential with λSH > 0 (which is the case

of interest for us) can be stabilized by a sufficiently large δth, provided that |m2
S | is smaller

than (roughly) the instability scale (squared) at which the (low-energy) potential becomes

negative. Being careful with factors involving dimensionless couplings, the threshold effect

would stabilize the potential if the scale

Λ2
th ∼ 6

λSH
λSλ

|m2
S | (5.20)

is smaller than Λλ, which is the scale at which the quartic coupling λ̃ becomes negative.18

It was concluded in [29] that in order to have absolute stability from this mechanism, the

quartic coupling λ(µ) should satisfy the following condition19

λ(µ) >

{
δth

0
for

µ ! Λth

µ # Λth

. (5.21)

18The SM instability scale, ΛI , is larger than Λλ. At one-loop order in perturbation theory and taking

the physical Higgs and top masses to be mh = 125.09GeV and mt = 173.15GeV we find ΛI = 5 ·1011 GeV,

whereas Λλ = 8 · 1010 GeV. Clearly, the physically meaningful scale for the stability is ΛI , and the scale Λλ

appears as a consequence of using the approximation of the (RG-improved) tree-level potential.
19In [29] the condition was actually formulated assuming Λth ∼ |m2

S |1/2. Note that this only holds if

6λSH ∼ λSλ, but the meaning of the two scales is different in general. While |m2
S |1/2 gives an estimate of

the regime of validity of the SM (as a low-energy theory), the scale Λth puts a bound to the range where

λ > δth is needed for stability.
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Stability bounds are usually obtained by demanding absolute stability, i.e. that the

potential does not become smaller than the Higgs vacuum anywhere. Therefore, for the

discussion that follows, we will say that the potential is stable if the minimum correspond-

ing to the Higgs vacuum is the one of lowest potential energy and if the potential does not

develop a runaway behaviour in any direction in field space. If there are other vacua (dif-

ferent from the Higgs one) with higher energy, those minima will be unstable with respect

to the Higgs vacuum (since tunneling to lower energies is always possible, in principle) but

the potential as a whole is deemed stable. By Higgs vacuum we normally refer to the min-

imum of the potential which corresponds to the standard electroweak symmetry breaking

vacuum with v = 246GeV in the low-energy model. Since we arranged for the Higgs vac-

uum to have zero cosmological constant (because for our purposes this makes no practical

difference), the condition of absolute stability is equivalent to requiring that the potential

should be positive (or zero) at all points. With this criterion, we recall that the instability

scale, ΛI , can be defined in the SM with the value of µ = h at which the potential of the

Higgs crosses zero towards negative values, i.e. ΛI ! 5 · 1011GeV as mentioned before.

The stability in the SMS was already discussed in [28, 29]. It was found there that in

addition to the possible stabilizing effect of λSH via the RG running that we mentioned

above, there is a tree-level effect which may be sufficient on its own to guarantee stability

at large h values. The threshold correction

δth = 3
λ2SH
λS

(5.19)

appearing in the matching of the Higgs quartic coupling, see (2.5) and (3.22), plays a key

role in this mechanism.

Concretely, it was argued in [28, 29] that any potential with λSH > 0 (which is the case

of interest for us) can be stabilized by a sufficiently large δth, provided that |m2
S | is smaller

than (roughly) the instability scale (squared) at which the (low-energy) potential becomes

negative. Being careful with factors involving dimensionless couplings, the threshold effect

would stabilize the potential if the scale

Λ2
th ∼ 6

λSH
λSλ

|m2
S | (5.20)

is smaller than Λλ, which is the scale at which the quartic coupling λ̃ becomes negative.18

It was concluded in [29] that in order to have absolute stability from this mechanism, the

quartic coupling λ(µ) should satisfy the following condition19

λ(µ) >

{
δth

0
for

µ ! Λth

µ # Λth

. (5.21)

18The SM instability scale, ΛI , is larger than Λλ. At one-loop order in perturbation theory and taking

the physical Higgs and top masses to be mh = 125.09GeV and mt = 173.15GeV we find ΛI = 5 ·1011 GeV,

whereas Λλ = 8 · 1010 GeV. Clearly, the physically meaningful scale for the stability is ΛI , and the scale Λλ

appears as a consequence of using the approximation of the (RG-improved) tree-level potential.
19In [29] the condition was actually formulated assuming Λth ∼ |m2

S |1/2. Note that this only holds if

6λSH ∼ λSλ, but the meaning of the two scales is different in general. While |m2
S |1/2 gives an estimate of

the regime of validity of the SM (as a low-energy theory), the scale Λth puts a bound to the range where

λ > δth is needed for stability.
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the appearance of the new scale in the stability conditions for the threshold mechanism

precludes stabilization and, therefore, a different mechanism is required. This could be

provided, for instance, by an additional heavy scalar that is stabilized at the origin. We

have checked that stabilizing the inflationary valleys in this way, the predictions for the

cosmological parameters (including loop corrections) remain extremely close to the tree-

level results with the SM plus the inflaton alone.

We also revisit the idea of Higgs false-vacuum inflation [25, 37], mentioned earlier, and

conclude that it cannot produce successful inflation for the measured values of the SM

couplings. A similar conclusion was already found in [26, 37], and we confirm that the

trouble is related to the tensor-to-scalar ratio r, as argued in [26]. An accurate evaluation

of the energy of the false vacua, compatible with the results of [4], yields a lower bound of

r ! 2 which excludes the result of [43], according to which a value of r compatible with

the latest measurements of Planck could be generated inside the false-vacuum valley.

The paper is organized as follows. In section 2 we introduce the model: the SM coupled

to a singlet through the Higgs portal with a Z2 symmetry, to be referred to as SMS. The

tree-level potential valleys are described in section 3, and the corresponding inflationary

dynamics is analyzed in detail in section 4, discussing the single-field and slow-roll approx-

imations and the generation of curvature perturbations. We devote section 5 to radiative

effects. In section 5.1 we review the RG-improved potential, emphasizing the importance

of the field-independent piece for cosmology. In section 5.2 we analyze the issue of the sta-

bility of the effective potential, and in section 5.3 we study the implications for inflation.

In section 5.4 we study if a coupling of the Higgs to the Ricci scalar can affect the stability

during inflation. In section 5.5, we revisit the scenario of false-vacuum inflation. The con-

clusions are drawn in section 6. In addition, three appendices are provided: section A gives

the two-loop RG equations that we use, section B reviews the matching of the relevant SM

parameters to experimental measurements, and section C contains the details about the

matching between the SM and SMS.

2 Standard Model coupled to a real scalar

We consider the SM coupled to a real singlet S, with a tree-level scalar potential given by

V tree(H,S; δi) = m2
HH†H +

m2
S

2
S2 +

λ

2
(H†H)2 +

λS
4!

S4 +
λSH
2

H†HS2 , (2.1)

where H is the Higgs SU(2) doublet. The symbol δi is used to denote generically the

couplings and squared masses of the model. This encompasses not only the couplings (λ, λS ,

λSH) and the masses (m2
H , m2

S) of the scalar potential (2.1), but also the Yukawa and gauge

couplings of the SM. If a Z2 symmetry is imposed, (2.1) is the most general renormalizable

potential for S and H, excluding an allowed vacuum energy term V0, which can be used

to accommodate the measured value of the cosmological constant Λ ∼ (10−3eV)4. For

practical purposes, we can assume Λ = 0, which does not change our results.5 As we will

5We assume that at the end of inflation the fields come to rest at a minimum of the potential corre-

sponding to the cosmological constant that we measure today. Since this value is many orders of magnitude

smaller than the energy scales involved during inflation we can safely take it to be zero.

– 5 –

V =

J
H
E
P
0
9
(
2
0
1
5
)
2
1
0

consider are mt, m2
S , λS and λSH . Since we restrict the parameter space of the high energy

model to the region which reproduces the measured Higgs mass, the Higgs quartic and

quadratic couplings in the SMS are not independent of the parameters m2
S ,λS and λSH .

Given the decoupling of the singlet at low energies, in order to match the SM and

the SMS one should demand the equality of the flat spacetime Green functions computed

on both sides of the threshold at which the heavy singlet decouples. When it comes

to the parameters in the scalar potential V (which encodes the Green functions at zero

momentum) the decoupling of S amounts to integrating it out using the zero-momentum

equation of motion. This means that at sufficiently low scales, when quantum fluctuations

of the singlet are suppressed, the field S sits (on average) at the value which minimizes

the potential energy for every h ≡
√
2H0, where H0 is the neutral component of the Higgs

doublet. As mentioned before, we are going to assume that m2
S < 0, which means that

this minimum happens for S2 #= 0. Notice that in principle the Higgs field could also be

stabilized with m2
S > 0 (with S = 0 at the minimum), but in this case the valley supporting

inflation would not extend to large values of h. Inflation would then be exclusively driven

by the field S alone (as in a standard independent single-field model) with no role played

by the Higgs.6 We will later see that for m2
S < 0 successful inflation is actually mostly

driven by S as well, however the couplings of the effective potential that drives inflation in

a single field approximation to the dynamics are affected by those of the Higgs in that case.

After these considerations, the matching of the parameters in the potential can be

done in practice by considering the potential V when the field S is set at the value Smin

that satisfies
dV

dS

∣∣∣∣
S=Smin(h)

= 0 , (2.2)

and demanding

V SM (h; δ̃) = V (h, Smin(h); δ) +O(h6/|m2
S |). (2.3)

In other words, the (one-dimensional) potential in the SM should be understood as the

value of the SMS potential along a line which follows the minima with respect to the field

S. This is the usual basic procedure for integrating out the heavy field at low-energies.

Notice that we denote SM quantities (low-energy) with a tilde to distinguish them from

the SMS ones (high-energy). As indicated, the equality in (2.3) is valid up to terms that

are suppressed by inverse powers of the heavy mass, corresponding to non-renormalizable

terms in a polynomial expansion of the SMS potential.

At tree-level, and writing the SM potential as

V SM = m̃2
H H†H +

λ̃

2
(H†H)2 , (2.4)

taking derivatives of (2.3) with respect to the fields gives the following matching conditions,

m̃2
H = m2

H − 3λSH
λS

m2
S , λ̃ = λ− 3λ2SH

λS
, (2.5)

6If m2
S > 0, successful inflation in the SMS with S playing the role of the inflation would then addition-

ally require a non-minimal coupling to gravity, in order to satisfy current CMB limits [39] on primordial

gravitational waves.
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Stability bounds are usually obtained by demanding absolute stability, i.e. that the

potential does not become smaller than the Higgs vacuum anywhere. Therefore, for the

discussion that follows, we will say that the potential is stable if the minimum correspond-

ing to the Higgs vacuum is the one of lowest potential energy and if the potential does not

develop a runaway behaviour in any direction in field space. If there are other vacua (dif-

ferent from the Higgs one) with higher energy, those minima will be unstable with respect

to the Higgs vacuum (since tunneling to lower energies is always possible, in principle) but

the potential as a whole is deemed stable. By Higgs vacuum we normally refer to the min-

imum of the potential which corresponds to the standard electroweak symmetry breaking

vacuum with v = 246GeV in the low-energy model. Since we arranged for the Higgs vac-

uum to have zero cosmological constant (because for our purposes this makes no practical

difference), the condition of absolute stability is equivalent to requiring that the potential

should be positive (or zero) at all points. With this criterion, we recall that the instability

scale, ΛI , can be defined in the SM with the value of µ = h at which the potential of the

Higgs crosses zero towards negative values, i.e. ΛI ! 5 · 1011GeV as mentioned before.

The stability in the SMS was already discussed in [28, 29]. It was found there that in

addition to the possible stabilizing effect of λSH via the RG running that we mentioned

above, there is a tree-level effect which may be sufficient on its own to guarantee stability

at large h values. The threshold correction

δth = 3
λ2SH
λS

(5.19)

appearing in the matching of the Higgs quartic coupling, see (2.5) and (3.22), plays a key

role in this mechanism.

Concretely, it was argued in [28, 29] that any potential with λSH > 0 (which is the case

of interest for us) can be stabilized by a sufficiently large δth, provided that |m2
S | is smaller

than (roughly) the instability scale (squared) at which the (low-energy) potential becomes

negative. Being careful with factors involving dimensionless couplings, the threshold effect

would stabilize the potential if the scale

Λ2
th ∼ 6

λSH
λSλ

|m2
S | (5.20)

is smaller than Λλ, which is the scale at which the quartic coupling λ̃ becomes negative.18

It was concluded in [29] that in order to have absolute stability from this mechanism, the

quartic coupling λ(µ) should satisfy the following condition19

λ(µ) >

{
δth

0
for

µ ! Λth

µ # Λth

. (5.21)

18The SM instability scale, ΛI , is larger than Λλ. At one-loop order in perturbation theory and taking

the physical Higgs and top masses to be mh = 125.09GeV and mt = 173.15GeV we find ΛI = 5 ·1011 GeV,

whereas Λλ = 8 · 1010 GeV. Clearly, the physically meaningful scale for the stability is ΛI , and the scale Λλ

appears as a consequence of using the approximation of the (RG-improved) tree-level potential.
19In [29] the condition was actually formulated assuming Λth ∼ |m2

S |1/2. Note that this only holds if

6λSH ∼ λSλ, but the meaning of the two scales is different in general. While |m2
S |1/2 gives an estimate of

the regime of validity of the SM (as a low-energy theory), the scale Λth puts a bound to the range where

λ > δth is needed for stability.
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Notice that (2.5) tells us that the SM quartic coupling is λ̃ = λ − δth. Thus, the upper

condition in (5.21) is equivalent to the SM stability condition. If the scale Λλ at which λ̃

would become negative is sufficiently larger than Λth, the relevant stability condition would

be the less restrictive (lower) condition in (5.21). Given that λ = λ̃ + δth, the instability

could then be avoided by a large enough δth. The condition (5.21) was inferred in [29]

by minimizing the tree-level potential at S = 0, a choice that is motivated because for

small S and vh (in comparison to h) the potential is susceptible to becoming negative due

to the combined effects of the quadratic and quartic h terms, see (3.2). We recall that

the SMS potential will be positive at large field values provided that λ > 0, λS > 0 and

λSH > − sqrtλλS/3.

We will now see how the condition (5.21) should be completed by including another

relevant scale. The SM instability as an RG effect is due to the beta function of λ becoming

negative due to a large yt contribution, see (5.16). Let us then suppose that the SM effective

potential appears to be unstable due to a heavy top quark. According to (5.21), it would

then seem possible to cure this instability by coupling the SM to a singlet S, even very

weakly, by introducing a sufficiently big threshold δth. And this would only work provided

that the instability occurs at a scale beyond Λth. However, it is clear that we can send λSH
and λS to very small positive numbers while keeping the value of δth unchanged. In such a

limit, we are effectively decoupling the singlet from the SM and it would be counterintuitive

if stability could still be achieved for very small values of λSH . In fact, rewriting (5.20) as:

λSH Λ2
th ∼ 2 δth

|m2
S |
λ

, (5.22)

we see that if we reduce λSH , the value of Λth has to increase for fixed m2
S (to keep constant

the right-hand side). At some small λSH , the value of Λth will then become larger than

ΛI , preventing altogether the possibility of curing the instability with δth for fixed m2
S .

This suggests that the coupling λSH may also play an important role in the mechanism of

tree-level stabilization, which cannot depend only on the threshold δth.

Another puzzle appears if the SM instability scale, ΛI , happens to be below |m2
S |1/2 but

above Λth, as can happen for small λSH , see (5.20). According to the stability conditions

described above by (5.20) and (5.21) the stabilization with a threshold should be possible

in this case. On the other hand, since the RG of the SM is to be trusted up to scales

of the order of |m2
S |1/2 > ΛI , the stabilization does not appear to be feasible because the

instability is reached before the threshold can have an effect. This issue could be resolved

if another scale, higher than ΛI , would forbid the stabilization. If there is such a scale, the

argument of the previous paragraph tells that it should be related to |mS | and determined

by λSH . We will now see how such an scale can actually become relevant.

After the discussion in section 3 about the lines of minima of the potential, we can

gain a more intuitive understanding of the stability conditions. These must ensure that the

potential along the h- and S-lines of minima is always positive, simply because absolute

stability demands that the potential must be positive everywhere. Since these lines are

good approximations to the actual valleys of the potential for small λSH , and the potential
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Stability bounds are usually obtained by demanding absolute stability, i.e. that the

potential does not become smaller than the Higgs vacuum anywhere. Therefore, for the

discussion that follows, we will say that the potential is stable if the minimum correspond-

ing to the Higgs vacuum is the one of lowest potential energy and if the potential does not

develop a runaway behaviour in any direction in field space. If there are other vacua (dif-

ferent from the Higgs one) with higher energy, those minima will be unstable with respect

to the Higgs vacuum (since tunneling to lower energies is always possible, in principle) but

the potential as a whole is deemed stable. By Higgs vacuum we normally refer to the min-

imum of the potential which corresponds to the standard electroweak symmetry breaking

vacuum with v = 246GeV in the low-energy model. Since we arranged for the Higgs vac-

uum to have zero cosmological constant (because for our purposes this makes no practical

difference), the condition of absolute stability is equivalent to requiring that the potential

should be positive (or zero) at all points. With this criterion, we recall that the instability

scale, ΛI , can be defined in the SM with the value of µ = h at which the potential of the

Higgs crosses zero towards negative values, i.e. ΛI ! 5 · 1011GeV as mentioned before.

The stability in the SMS was already discussed in [28, 29]. It was found there that in

addition to the possible stabilizing effect of λSH via the RG running that we mentioned

above, there is a tree-level effect which may be sufficient on its own to guarantee stability

at large h values. The threshold correction

δth = 3
λ2SH
λS

(5.19)

appearing in the matching of the Higgs quartic coupling, see (2.5) and (3.22), plays a key

role in this mechanism.

Concretely, it was argued in [28, 29] that any potential with λSH > 0 (which is the case

of interest for us) can be stabilized by a sufficiently large δth, provided that |m2
S | is smaller

than (roughly) the instability scale (squared) at which the (low-energy) potential becomes

negative. Being careful with factors involving dimensionless couplings, the threshold effect

would stabilize the potential if the scale

Λ2
th ∼ 6

λSH
λSλ

|m2
S | (5.20)

is smaller than Λλ, which is the scale at which the quartic coupling λ̃ becomes negative.18

It was concluded in [29] that in order to have absolute stability from this mechanism, the

quartic coupling λ(µ) should satisfy the following condition19

λ(µ) >

{
δth

0
for

µ ! Λth

µ # Λth

. (5.21)

18The SM instability scale, ΛI , is larger than Λλ. At one-loop order in perturbation theory and taking

the physical Higgs and top masses to be mh = 125.09GeV and mt = 173.15GeV we find ΛI = 5 ·1011 GeV,

whereas Λλ = 8 · 1010 GeV. Clearly, the physically meaningful scale for the stability is ΛI , and the scale Λλ

appears as a consequence of using the approximation of the (RG-improved) tree-level potential.
19In [29] the condition was actually formulated assuming Λth ∼ |m2

S |1/2. Note that this only holds if

6λSH ∼ λSλ, but the meaning of the two scales is different in general. While |m2
S |1/2 gives an estimate of

the regime of validity of the SM (as a low-energy theory), the scale Λth puts a bound to the range where

λ > δth is needed for stability.
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the appearance of the new scale in the stability conditions for the threshold mechanism

precludes stabilization and, therefore, a different mechanism is required. This could be

provided, for instance, by an additional heavy scalar that is stabilized at the origin. We

have checked that stabilizing the inflationary valleys in this way, the predictions for the

cosmological parameters (including loop corrections) remain extremely close to the tree-

level results with the SM plus the inflaton alone.

We also revisit the idea of Higgs false-vacuum inflation [25, 37], mentioned earlier, and

conclude that it cannot produce successful inflation for the measured values of the SM

couplings. A similar conclusion was already found in [26, 37], and we confirm that the

trouble is related to the tensor-to-scalar ratio r, as argued in [26]. An accurate evaluation

of the energy of the false vacua, compatible with the results of [4], yields a lower bound of

r ! 2 which excludes the result of [43], according to which a value of r compatible with

the latest measurements of Planck could be generated inside the false-vacuum valley.

The paper is organized as follows. In section 2 we introduce the model: the SM coupled

to a singlet through the Higgs portal with a Z2 symmetry, to be referred to as SMS. The

tree-level potential valleys are described in section 3, and the corresponding inflationary

dynamics is analyzed in detail in section 4, discussing the single-field and slow-roll approx-

imations and the generation of curvature perturbations. We devote section 5 to radiative

effects. In section 5.1 we review the RG-improved potential, emphasizing the importance

of the field-independent piece for cosmology. In section 5.2 we analyze the issue of the sta-

bility of the effective potential, and in section 5.3 we study the implications for inflation.

In section 5.4 we study if a coupling of the Higgs to the Ricci scalar can affect the stability

during inflation. In section 5.5, we revisit the scenario of false-vacuum inflation. The con-

clusions are drawn in section 6. In addition, three appendices are provided: section A gives

the two-loop RG equations that we use, section B reviews the matching of the relevant SM

parameters to experimental measurements, and section C contains the details about the

matching between the SM and SMS.

2 Standard Model coupled to a real scalar

We consider the SM coupled to a real singlet S, with a tree-level scalar potential given by

V tree(H,S; δi) = m2
HH†H +

m2
S

2
S2 +

λ

2
(H†H)2 +

λS
4!

S4 +
λSH
2

H†HS2 , (2.1)

where H is the Higgs SU(2) doublet. The symbol δi is used to denote generically the

couplings and squared masses of the model. This encompasses not only the couplings (λ, λS ,

λSH) and the masses (m2
H , m2

S) of the scalar potential (2.1), but also the Yukawa and gauge

couplings of the SM. If a Z2 symmetry is imposed, (2.1) is the most general renormalizable

potential for S and H, excluding an allowed vacuum energy term V0, which can be used

to accommodate the measured value of the cosmological constant Λ ∼ (10−3eV)4. For

practical purposes, we can assume Λ = 0, which does not change our results.5 As we will

5We assume that at the end of inflation the fields come to rest at a minimum of the potential corre-

sponding to the cosmological constant that we measure today. Since this value is many orders of magnitude

smaller than the energy scales involved during inflation we can safely take it to be zero.
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consider are mt, m2
S , λS and λSH . Since we restrict the parameter space of the high energy

model to the region which reproduces the measured Higgs mass, the Higgs quartic and

quadratic couplings in the SMS are not independent of the parameters m2
S ,λS and λSH .

Given the decoupling of the singlet at low energies, in order to match the SM and

the SMS one should demand the equality of the flat spacetime Green functions computed

on both sides of the threshold at which the heavy singlet decouples. When it comes

to the parameters in the scalar potential V (which encodes the Green functions at zero

momentum) the decoupling of S amounts to integrating it out using the zero-momentum

equation of motion. This means that at sufficiently low scales, when quantum fluctuations

of the singlet are suppressed, the field S sits (on average) at the value which minimizes

the potential energy for every h ≡
√
2H0, where H0 is the neutral component of the Higgs

doublet. As mentioned before, we are going to assume that m2
S < 0, which means that

this minimum happens for S2 #= 0. Notice that in principle the Higgs field could also be

stabilized with m2
S > 0 (with S = 0 at the minimum), but in this case the valley supporting

inflation would not extend to large values of h. Inflation would then be exclusively driven

by the field S alone (as in a standard independent single-field model) with no role played

by the Higgs.6 We will later see that for m2
S < 0 successful inflation is actually mostly

driven by S as well, however the couplings of the effective potential that drives inflation in

a single field approximation to the dynamics are affected by those of the Higgs in that case.

After these considerations, the matching of the parameters in the potential can be

done in practice by considering the potential V when the field S is set at the value Smin

that satisfies
dV

dS

∣∣∣∣
S=Smin(h)

= 0 , (2.2)

and demanding

V SM (h; δ̃) = V (h, Smin(h); δ) +O(h6/|m2
S |). (2.3)

In other words, the (one-dimensional) potential in the SM should be understood as the

value of the SMS potential along a line which follows the minima with respect to the field

S. This is the usual basic procedure for integrating out the heavy field at low-energies.

Notice that we denote SM quantities (low-energy) with a tilde to distinguish them from

the SMS ones (high-energy). As indicated, the equality in (2.3) is valid up to terms that

are suppressed by inverse powers of the heavy mass, corresponding to non-renormalizable

terms in a polynomial expansion of the SMS potential.

At tree-level, and writing the SM potential as

V SM = m̃2
H H†H +

λ̃

2
(H†H)2 , (2.4)

taking derivatives of (2.3) with respect to the fields gives the following matching conditions,

m̃2
H = m2

H − 3λSH
λS

m2
S , λ̃ = λ− 3λ2SH

λS
, (2.5)

6If m2
S > 0, successful inflation in the SMS with S playing the role of the inflation would then addition-

ally require a non-minimal coupling to gravity, in order to satisfy current CMB limits [39] on primordial

gravitational waves.
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Stability bounds are usually obtained by demanding absolute stability, i.e. that the

potential does not become smaller than the Higgs vacuum anywhere. Therefore, for the

discussion that follows, we will say that the potential is stable if the minimum correspond-

ing to the Higgs vacuum is the one of lowest potential energy and if the potential does not

develop a runaway behaviour in any direction in field space. If there are other vacua (dif-

ferent from the Higgs one) with higher energy, those minima will be unstable with respect

to the Higgs vacuum (since tunneling to lower energies is always possible, in principle) but

the potential as a whole is deemed stable. By Higgs vacuum we normally refer to the min-

imum of the potential which corresponds to the standard electroweak symmetry breaking

vacuum with v = 246GeV in the low-energy model. Since we arranged for the Higgs vac-

uum to have zero cosmological constant (because for our purposes this makes no practical

difference), the condition of absolute stability is equivalent to requiring that the potential

should be positive (or zero) at all points. With this criterion, we recall that the instability

scale, ΛI , can be defined in the SM with the value of µ = h at which the potential of the

Higgs crosses zero towards negative values, i.e. ΛI ! 5 · 1011GeV as mentioned before.

The stability in the SMS was already discussed in [28, 29]. It was found there that in

addition to the possible stabilizing effect of λSH via the RG running that we mentioned

above, there is a tree-level effect which may be sufficient on its own to guarantee stability

at large h values. The threshold correction

δth = 3
λ2SH
λS

(5.19)

appearing in the matching of the Higgs quartic coupling, see (2.5) and (3.22), plays a key

role in this mechanism.

Concretely, it was argued in [28, 29] that any potential with λSH > 0 (which is the case

of interest for us) can be stabilized by a sufficiently large δth, provided that |m2
S | is smaller

than (roughly) the instability scale (squared) at which the (low-energy) potential becomes

negative. Being careful with factors involving dimensionless couplings, the threshold effect

would stabilize the potential if the scale

Λ2
th ∼ 6

λSH
λSλ

|m2
S | (5.20)

is smaller than Λλ, which is the scale at which the quartic coupling λ̃ becomes negative.18

It was concluded in [29] that in order to have absolute stability from this mechanism, the

quartic coupling λ(µ) should satisfy the following condition19

λ(µ) >

{
δth

0
for

µ ! Λth

µ # Λth

. (5.21)

18The SM instability scale, ΛI , is larger than Λλ. At one-loop order in perturbation theory and taking

the physical Higgs and top masses to be mh = 125.09GeV and mt = 173.15GeV we find ΛI = 5 ·1011 GeV,

whereas Λλ = 8 · 1010 GeV. Clearly, the physically meaningful scale for the stability is ΛI , and the scale Λλ

appears as a consequence of using the approximation of the (RG-improved) tree-level potential.
19In [29] the condition was actually formulated assuming Λth ∼ |m2

S |1/2. Note that this only holds if

6λSH ∼ λSλ, but the meaning of the two scales is different in general. While |m2
S |1/2 gives an estimate of

the regime of validity of the SM (as a low-energy theory), the scale Λth puts a bound to the range where

λ > δth is needed for stability.
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Notice that (2.5) tells us that the SM quartic coupling is λ̃ = λ − δth. Thus, the upper

condition in (5.21) is equivalent to the SM stability condition. If the scale Λλ at which λ̃

would become negative is sufficiently larger than Λth, the relevant stability condition would

be the less restrictive (lower) condition in (5.21). Given that λ = λ̃ + δth, the instability

could then be avoided by a large enough δth. The condition (5.21) was inferred in [29]

by minimizing the tree-level potential at S = 0, a choice that is motivated because for

small S and vh (in comparison to h) the potential is susceptible to becoming negative due

to the combined effects of the quadratic and quartic h terms, see (3.2). We recall that

the SMS potential will be positive at large field values provided that λ > 0, λS > 0 and

λSH > − sqrtλλS/3.

We will now see how the condition (5.21) should be completed by including another

relevant scale. The SM instability as an RG effect is due to the beta function of λ becoming

negative due to a large yt contribution, see (5.16). Let us then suppose that the SM effective

potential appears to be unstable due to a heavy top quark. According to (5.21), it would

then seem possible to cure this instability by coupling the SM to a singlet S, even very

weakly, by introducing a sufficiently big threshold δth. And this would only work provided

that the instability occurs at a scale beyond Λth. However, it is clear that we can send λSH
and λS to very small positive numbers while keeping the value of δth unchanged. In such a

limit, we are effectively decoupling the singlet from the SM and it would be counterintuitive

if stability could still be achieved for very small values of λSH . In fact, rewriting (5.20) as:

λSH Λ2
th ∼ 2 δth

|m2
S |
λ

, (5.22)

we see that if we reduce λSH , the value of Λth has to increase for fixed m2
S (to keep constant

the right-hand side). At some small λSH , the value of Λth will then become larger than

ΛI , preventing altogether the possibility of curing the instability with δth for fixed m2
S .

This suggests that the coupling λSH may also play an important role in the mechanism of

tree-level stabilization, which cannot depend only on the threshold δth.

Another puzzle appears if the SM instability scale, ΛI , happens to be below |m2
S |1/2 but

above Λth, as can happen for small λSH , see (5.20). According to the stability conditions

described above by (5.20) and (5.21) the stabilization with a threshold should be possible

in this case. On the other hand, since the RG of the SM is to be trusted up to scales

of the order of |m2
S |1/2 > ΛI , the stabilization does not appear to be feasible because the

instability is reached before the threshold can have an effect. This issue could be resolved

if another scale, higher than ΛI , would forbid the stabilization. If there is such a scale, the

argument of the previous paragraph tells that it should be related to |mS | and determined

by λSH . We will now see how such an scale can actually become relevant.

After the discussion in section 3 about the lines of minima of the potential, we can

gain a more intuitive understanding of the stability conditions. These must ensure that the

potential along the h- and S-lines of minima is always positive, simply because absolute

stability demands that the potential must be positive everywhere. Since these lines are

good approximations to the actual valleys of the potential for small λSH , and the potential
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Stability bounds are usually obtained by demanding absolute stability, i.e. that the

potential does not become smaller than the Higgs vacuum anywhere. Therefore, for the

discussion that follows, we will say that the potential is stable if the minimum correspond-

ing to the Higgs vacuum is the one of lowest potential energy and if the potential does not

develop a runaway behaviour in any direction in field space. If there are other vacua (dif-

ferent from the Higgs one) with higher energy, those minima will be unstable with respect

to the Higgs vacuum (since tunneling to lower energies is always possible, in principle) but

the potential as a whole is deemed stable. By Higgs vacuum we normally refer to the min-

imum of the potential which corresponds to the standard electroweak symmetry breaking

vacuum with v = 246GeV in the low-energy model. Since we arranged for the Higgs vac-

uum to have zero cosmological constant (because for our purposes this makes no practical

difference), the condition of absolute stability is equivalent to requiring that the potential

should be positive (or zero) at all points. With this criterion, we recall that the instability

scale, ΛI , can be defined in the SM with the value of µ = h at which the potential of the

Higgs crosses zero towards negative values, i.e. ΛI ! 5 · 1011GeV as mentioned before.

The stability in the SMS was already discussed in [28, 29]. It was found there that in

addition to the possible stabilizing effect of λSH via the RG running that we mentioned

above, there is a tree-level effect which may be sufficient on its own to guarantee stability

at large h values. The threshold correction

δth = 3
λ2SH
λS

(5.19)

appearing in the matching of the Higgs quartic coupling, see (2.5) and (3.22), plays a key

role in this mechanism.

Concretely, it was argued in [28, 29] that any potential with λSH > 0 (which is the case

of interest for us) can be stabilized by a sufficiently large δth, provided that |m2
S | is smaller

than (roughly) the instability scale (squared) at which the (low-energy) potential becomes

negative. Being careful with factors involving dimensionless couplings, the threshold effect

would stabilize the potential if the scale

Λ2
th ∼ 6

λSH
λSλ

|m2
S | (5.20)

is smaller than Λλ, which is the scale at which the quartic coupling λ̃ becomes negative.18

It was concluded in [29] that in order to have absolute stability from this mechanism, the

quartic coupling λ(µ) should satisfy the following condition19

λ(µ) >

{
δth

0
for

µ ! Λth

µ # Λth

. (5.21)

18The SM instability scale, ΛI , is larger than Λλ. At one-loop order in perturbation theory and taking

the physical Higgs and top masses to be mh = 125.09GeV and mt = 173.15GeV we find ΛI = 5 ·1011 GeV,

whereas Λλ = 8 · 1010 GeV. Clearly, the physically meaningful scale for the stability is ΛI , and the scale Λλ

appears as a consequence of using the approximation of the (RG-improved) tree-level potential.
19In [29] the condition was actually formulated assuming Λth ∼ |m2

S |1/2. Note that this only holds if

6λSH ∼ λSλ, but the meaning of the two scales is different in general. While |m2
S |1/2 gives an estimate of

the regime of validity of the SM (as a low-energy theory), the scale Λth puts a bound to the range where

λ > δth is needed for stability.
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the appearance of the new scale in the stability conditions for the threshold mechanism

precludes stabilization and, therefore, a different mechanism is required. This could be

provided, for instance, by an additional heavy scalar that is stabilized at the origin. We

have checked that stabilizing the inflationary valleys in this way, the predictions for the

cosmological parameters (including loop corrections) remain extremely close to the tree-

level results with the SM plus the inflaton alone.

We also revisit the idea of Higgs false-vacuum inflation [25, 37], mentioned earlier, and

conclude that it cannot produce successful inflation for the measured values of the SM

couplings. A similar conclusion was already found in [26, 37], and we confirm that the

trouble is related to the tensor-to-scalar ratio r, as argued in [26]. An accurate evaluation

of the energy of the false vacua, compatible with the results of [4], yields a lower bound of

r ! 2 which excludes the result of [43], according to which a value of r compatible with

the latest measurements of Planck could be generated inside the false-vacuum valley.

The paper is organized as follows. In section 2 we introduce the model: the SM coupled

to a singlet through the Higgs portal with a Z2 symmetry, to be referred to as SMS. The

tree-level potential valleys are described in section 3, and the corresponding inflationary

dynamics is analyzed in detail in section 4, discussing the single-field and slow-roll approx-

imations and the generation of curvature perturbations. We devote section 5 to radiative

effects. In section 5.1 we review the RG-improved potential, emphasizing the importance

of the field-independent piece for cosmology. In section 5.2 we analyze the issue of the sta-

bility of the effective potential, and in section 5.3 we study the implications for inflation.

In section 5.4 we study if a coupling of the Higgs to the Ricci scalar can affect the stability

during inflation. In section 5.5, we revisit the scenario of false-vacuum inflation. The con-

clusions are drawn in section 6. In addition, three appendices are provided: section A gives

the two-loop RG equations that we use, section B reviews the matching of the relevant SM

parameters to experimental measurements, and section C contains the details about the

matching between the SM and SMS.

2 Standard Model coupled to a real scalar

We consider the SM coupled to a real singlet S, with a tree-level scalar potential given by

V tree(H,S; δi) = m2
HH†H +

m2
S

2
S2 +

λ

2
(H†H)2 +

λS
4!

S4 +
λSH
2

H†HS2 , (2.1)

where H is the Higgs SU(2) doublet. The symbol δi is used to denote generically the

couplings and squared masses of the model. This encompasses not only the couplings (λ, λS ,

λSH) and the masses (m2
H , m2

S) of the scalar potential (2.1), but also the Yukawa and gauge

couplings of the SM. If a Z2 symmetry is imposed, (2.1) is the most general renormalizable

potential for S and H, excluding an allowed vacuum energy term V0, which can be used

to accommodate the measured value of the cosmological constant Λ ∼ (10−3eV)4. For

practical purposes, we can assume Λ = 0, which does not change our results.5 As we will

5We assume that at the end of inflation the fields come to rest at a minimum of the potential corre-

sponding to the cosmological constant that we measure today. Since this value is many orders of magnitude

smaller than the energy scales involved during inflation we can safely take it to be zero.
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consider are mt, m2
S , λS and λSH . Since we restrict the parameter space of the high energy

model to the region which reproduces the measured Higgs mass, the Higgs quartic and

quadratic couplings in the SMS are not independent of the parameters m2
S ,λS and λSH .

Given the decoupling of the singlet at low energies, in order to match the SM and

the SMS one should demand the equality of the flat spacetime Green functions computed

on both sides of the threshold at which the heavy singlet decouples. When it comes

to the parameters in the scalar potential V (which encodes the Green functions at zero

momentum) the decoupling of S amounts to integrating it out using the zero-momentum

equation of motion. This means that at sufficiently low scales, when quantum fluctuations

of the singlet are suppressed, the field S sits (on average) at the value which minimizes

the potential energy for every h ≡
√
2H0, where H0 is the neutral component of the Higgs

doublet. As mentioned before, we are going to assume that m2
S < 0, which means that

this minimum happens for S2 #= 0. Notice that in principle the Higgs field could also be

stabilized with m2
S > 0 (with S = 0 at the minimum), but in this case the valley supporting

inflation would not extend to large values of h. Inflation would then be exclusively driven

by the field S alone (as in a standard independent single-field model) with no role played

by the Higgs.6 We will later see that for m2
S < 0 successful inflation is actually mostly

driven by S as well, however the couplings of the effective potential that drives inflation in

a single field approximation to the dynamics are affected by those of the Higgs in that case.

After these considerations, the matching of the parameters in the potential can be

done in practice by considering the potential V when the field S is set at the value Smin

that satisfies
dV

dS

∣∣∣∣
S=Smin(h)

= 0 , (2.2)

and demanding

V SM (h; δ̃) = V (h, Smin(h); δ) +O(h6/|m2
S |). (2.3)

In other words, the (one-dimensional) potential in the SM should be understood as the

value of the SMS potential along a line which follows the minima with respect to the field

S. This is the usual basic procedure for integrating out the heavy field at low-energies.

Notice that we denote SM quantities (low-energy) with a tilde to distinguish them from

the SMS ones (high-energy). As indicated, the equality in (2.3) is valid up to terms that

are suppressed by inverse powers of the heavy mass, corresponding to non-renormalizable

terms in a polynomial expansion of the SMS potential.

At tree-level, and writing the SM potential as

V SM = m̃2
H H†H +

λ̃

2
(H†H)2 , (2.4)

taking derivatives of (2.3) with respect to the fields gives the following matching conditions,

m̃2
H = m2

H − 3λSH
λS

m2
S , λ̃ = λ− 3λ2SH

λS
, (2.5)

6If m2
S > 0, successful inflation in the SMS with S playing the role of the inflation would then addition-

ally require a non-minimal coupling to gravity, in order to satisfy current CMB limits [39] on primordial

gravitational waves.
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grows in the directions orthogonal to the bottom of the valleys, the potential along the

lines will provide stringent stability conditions.

The condition (5.21) can be obtained following the potential along the h-line as a

function of the field h. Effectively, this means that we identify the renormalization scale,

µ, with h. This is an appropriate choice to study the potential at sufficiently high energies

(where the instability region is). Assuming that λS > 0 and λSH > 0, the condition

λ̃ = λ − δth > 0 is immediately implied by (3.22). The region of applicability of λ > δth
follows from for the range of scales for which the h-line exists, which is given by (3.21), i.e.

h2 ! 2|m2
H |/λ ∼ Λ2

th, where we have used (2.5) and m̃2
H # m2

H . For scales much larger than

Λth, which are not reached by the h-line, the potential near S = 0 is dominated by the Higgs

quartic and therefore the stability condition reduces to λ > 0, in agreement with (5.21).

Similarly, we can follow the potential along the S-line expressed as a function of h,

given by (3.19), for the same reason as for the h-line. Since the potential along the S-line

reproduces to lowest order the tree-level SM potential,20 absolute stability requires that

the SM quartic coupling must be above zero, i.e. λ̃ > 0. As before, this should occur for

the whole range of scales for which the S-line exists, that is: h2 ! 2|m2
S |/λSH . And again,

for scales much larger than this one, the potential is dominated by the quartic couplings

and the stability condition is simply λ > 0.

Therefore, we see that once we consider the S-line, a new scale enters into the game:

Λ̂2
th ∼ 2|m2

S |
λSH

, (5.23)

which makes explicit the relevance of λSH for the tree-level stabilization mechanism. The

scale Λλ must be larger than both Λth and Λ̂th for the threshold effect to be able to cure the

instability. The stability conditions can then be phrased as follows: the quartic coupling λ

must satisfy

λ(µ) >

{
δth

0
for

µ ! Λ

µ $ Λ
, (5.24)

where the scale Λλ at which the SM quartic Higgs coupling becomes negative must be such

that

Λλ " Λ (5.25)

and we define

Λ ∼ Max
{
Λth , Λ̂th

}
. (5.26)

We can now re-interpret the relation (5.22) and use it to connect the two scales:

Λth ∼ δth
λ

Λ̂th . (5.27)

As we argued above, in the decoupling limit (i.e. λSH → 0) the scale Λth will surpass

Λλ if δth and m2
S are kept fixed, violating the condition Λλ " Λth (which is necessary to

20Notice that the potential along the S-line can be identified with the result of integrating out the heavy

field S, which is the usual procedure to study the model for h at low energies, i.e. much smaller than |mS |.
Indeed the S-line first appeared in section 2 for matching the SMS at low energies to the SM.
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grows in the directions orthogonal to the bottom of the valleys, the potential along the

lines will provide stringent stability conditions.

The condition (5.21) can be obtained following the potential along the h-line as a

function of the field h. Effectively, this means that we identify the renormalization scale,

µ, with h. This is an appropriate choice to study the potential at sufficiently high energies

(where the instability region is). Assuming that λS > 0 and λSH > 0, the condition

λ̃ = λ − δth > 0 is immediately implied by (3.22). The region of applicability of λ > δth
follows from for the range of scales for which the h-line exists, which is given by (3.21), i.e.

h2 ! 2|m2
H |/λ ∼ Λ2

th, where we have used (2.5) and m̃2
H # m2

H . For scales much larger than

Λth, which are not reached by the h-line, the potential near S = 0 is dominated by the Higgs

quartic and therefore the stability condition reduces to λ > 0, in agreement with (5.21).

Similarly, we can follow the potential along the S-line expressed as a function of h,

given by (3.19), for the same reason as for the h-line. Since the potential along the S-line

reproduces to lowest order the tree-level SM potential,20 absolute stability requires that

the SM quartic coupling must be above zero, i.e. λ̃ > 0. As before, this should occur for

the whole range of scales for which the S-line exists, that is: h2 ! 2|m2
S |/λSH . And again,

for scales much larger than this one, the potential is dominated by the quartic couplings

and the stability condition is simply λ > 0.

Therefore, we see that once we consider the S-line, a new scale enters into the game:

Λ̂2
th ∼ 2|m2

S |
λSH

, (5.23)

which makes explicit the relevance of λSH for the tree-level stabilization mechanism. The

scale Λλ must be larger than both Λth and Λ̂th for the threshold effect to be able to cure the

instability. The stability conditions can then be phrased as follows: the quartic coupling λ

must satisfy

λ(µ) >

{
δth

0
for

µ ! Λ

µ $ Λ
, (5.24)

where the scale Λλ at which the SM quartic Higgs coupling becomes negative must be such

that

Λλ " Λ (5.25)

and we define

Λ ∼ Max
{
Λth , Λ̂th

}
. (5.26)

We can now re-interpret the relation (5.22) and use it to connect the two scales:

Λth ∼ δth
λ

Λ̂th . (5.27)

As we argued above, in the decoupling limit (i.e. λSH → 0) the scale Λth will surpass

Λλ if δth and m2
S are kept fixed, violating the condition Λλ " Λth (which is necessary to

20Notice that the potential along the S-line can be identified with the result of integrating out the heavy

field S, which is the usual procedure to study the model for h at low energies, i.e. much smaller than |mS |.
Indeed the S-line first appeared in section 2 for matching the SMS at low energies to the SM.
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Stability bounds are usually obtained by demanding absolute stability, i.e. that the

potential does not become smaller than the Higgs vacuum anywhere. Therefore, for the

discussion that follows, we will say that the potential is stable if the minimum correspond-

ing to the Higgs vacuum is the one of lowest potential energy and if the potential does not

develop a runaway behaviour in any direction in field space. If there are other vacua (dif-

ferent from the Higgs one) with higher energy, those minima will be unstable with respect

to the Higgs vacuum (since tunneling to lower energies is always possible, in principle) but

the potential as a whole is deemed stable. By Higgs vacuum we normally refer to the min-

imum of the potential which corresponds to the standard electroweak symmetry breaking

vacuum with v = 246GeV in the low-energy model. Since we arranged for the Higgs vac-

uum to have zero cosmological constant (because for our purposes this makes no practical

difference), the condition of absolute stability is equivalent to requiring that the potential

should be positive (or zero) at all points. With this criterion, we recall that the instability

scale, ΛI , can be defined in the SM with the value of µ = h at which the potential of the

Higgs crosses zero towards negative values, i.e. ΛI ! 5 · 1011GeV as mentioned before.

The stability in the SMS was already discussed in [28, 29]. It was found there that in

addition to the possible stabilizing effect of λSH via the RG running that we mentioned

above, there is a tree-level effect which may be sufficient on its own to guarantee stability

at large h values. The threshold correction

δth = 3
λ2SH
λS

(5.19)

appearing in the matching of the Higgs quartic coupling, see (2.5) and (3.22), plays a key

role in this mechanism.

Concretely, it was argued in [28, 29] that any potential with λSH > 0 (which is the case

of interest for us) can be stabilized by a sufficiently large δth, provided that |m2
S | is smaller

than (roughly) the instability scale (squared) at which the (low-energy) potential becomes

negative. Being careful with factors involving dimensionless couplings, the threshold effect

would stabilize the potential if the scale

Λ2
th ∼ 6

λSH
λSλ

|m2
S | (5.20)

is smaller than Λλ, which is the scale at which the quartic coupling λ̃ becomes negative.18

It was concluded in [29] that in order to have absolute stability from this mechanism, the

quartic coupling λ(µ) should satisfy the following condition19

λ(µ) >

{
δth

0
for

µ ! Λth

µ # Λth

. (5.21)

18The SM instability scale, ΛI , is larger than Λλ. At one-loop order in perturbation theory and taking

the physical Higgs and top masses to be mh = 125.09GeV and mt = 173.15GeV we find ΛI = 5 ·1011 GeV,

whereas Λλ = 8 · 1010 GeV. Clearly, the physically meaningful scale for the stability is ΛI , and the scale Λλ

appears as a consequence of using the approximation of the (RG-improved) tree-level potential.
19In [29] the condition was actually formulated assuming Λth ∼ |m2

S |1/2. Note that this only holds if

6λSH ∼ λSλ, but the meaning of the two scales is different in general. While |m2
S |1/2 gives an estimate of

the regime of validity of the SM (as a low-energy theory), the scale Λth puts a bound to the range where

λ > δth is needed for stability.
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grows in the directions orthogonal to the bottom of the valleys, the potential along the

lines will provide stringent stability conditions.

The condition (5.21) can be obtained following the potential along the h-line as a

function of the field h. Effectively, this means that we identify the renormalization scale,

µ, with h. This is an appropriate choice to study the potential at sufficiently high energies

(where the instability region is). Assuming that λS > 0 and λSH > 0, the condition

λ̃ = λ − δth > 0 is immediately implied by (3.22). The region of applicability of λ > δth
follows from for the range of scales for which the h-line exists, which is given by (3.21), i.e.

h2 ! 2|m2
H |/λ ∼ Λ2

th, where we have used (2.5) and m̃2
H # m2

H . For scales much larger than

Λth, which are not reached by the h-line, the potential near S = 0 is dominated by the Higgs

quartic and therefore the stability condition reduces to λ > 0, in agreement with (5.21).

Similarly, we can follow the potential along the S-line expressed as a function of h,

given by (3.19), for the same reason as for the h-line. Since the potential along the S-line

reproduces to lowest order the tree-level SM potential,20 absolute stability requires that

the SM quartic coupling must be above zero, i.e. λ̃ > 0. As before, this should occur for

the whole range of scales for which the S-line exists, that is: h2 ! 2|m2
S |/λSH . And again,

for scales much larger than this one, the potential is dominated by the quartic couplings

and the stability condition is simply λ > 0.

Therefore, we see that once we consider the S-line, a new scale enters into the game:

Λ̂2
th ∼ 2|m2

S |
λSH

, (5.23)

which makes explicit the relevance of λSH for the tree-level stabilization mechanism. The

scale Λλ must be larger than both Λth and Λ̂th for the threshold effect to be able to cure the

instability. The stability conditions can then be phrased as follows: the quartic coupling λ

must satisfy

λ(µ) >

{
δth

0
for

µ ! Λ

µ $ Λ
, (5.24)

where the scale Λλ at which the SM quartic Higgs coupling becomes negative must be such

that

Λλ " Λ (5.25)

and we define

Λ ∼ Max
{
Λth , Λ̂th

}
. (5.26)

We can now re-interpret the relation (5.22) and use it to connect the two scales:

Λth ∼ δth
λ

Λ̂th . (5.27)

As we argued above, in the decoupling limit (i.e. λSH → 0) the scale Λth will surpass

Λλ if δth and m2
S are kept fixed, violating the condition Λλ " Λth (which is necessary to

20Notice that the potential along the S-line can be identified with the result of integrating out the heavy

field S, which is the usual procedure to study the model for h at low energies, i.e. much smaller than |mS |.
Indeed the S-line first appeared in section 2 for matching the SMS at low energies to the SM.
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grows in the directions orthogonal to the bottom of the valleys, the potential along the

lines will provide stringent stability conditions.

The condition (5.21) can be obtained following the potential along the h-line as a

function of the field h. Effectively, this means that we identify the renormalization scale,

µ, with h. This is an appropriate choice to study the potential at sufficiently high energies

(where the instability region is). Assuming that λS > 0 and λSH > 0, the condition

λ̃ = λ − δth > 0 is immediately implied by (3.22). The region of applicability of λ > δth
follows from for the range of scales for which the h-line exists, which is given by (3.21), i.e.

h2 ! 2|m2
H |/λ ∼ Λ2

th, where we have used (2.5) and m̃2
H # m2

H . For scales much larger than

Λth, which are not reached by the h-line, the potential near S = 0 is dominated by the Higgs

quartic and therefore the stability condition reduces to λ > 0, in agreement with (5.21).

Similarly, we can follow the potential along the S-line expressed as a function of h,

given by (3.19), for the same reason as for the h-line. Since the potential along the S-line

reproduces to lowest order the tree-level SM potential,20 absolute stability requires that

the SM quartic coupling must be above zero, i.e. λ̃ > 0. As before, this should occur for

the whole range of scales for which the S-line exists, that is: h2 ! 2|m2
S |/λSH . And again,

for scales much larger than this one, the potential is dominated by the quartic couplings

and the stability condition is simply λ > 0.

Therefore, we see that once we consider the S-line, a new scale enters into the game:

Λ̂2
th ∼ 2|m2

S |
λSH

, (5.23)

which makes explicit the relevance of λSH for the tree-level stabilization mechanism. The

scale Λλ must be larger than both Λth and Λ̂th for the threshold effect to be able to cure the

instability. The stability conditions can then be phrased as follows: the quartic coupling λ

must satisfy

λ(µ) >

{
δth

0
for

µ ! Λ

µ $ Λ
, (5.24)

where the scale Λλ at which the SM quartic Higgs coupling becomes negative must be such

that

Λλ " Λ (5.25)

and we define

Λ ∼ Max
{
Λth , Λ̂th

}
. (5.26)

We can now re-interpret the relation (5.22) and use it to connect the two scales:

Λth ∼ δth
λ

Λ̂th . (5.27)

As we argued above, in the decoupling limit (i.e. λSH → 0) the scale Λth will surpass

Λλ if δth and m2
S are kept fixed, violating the condition Λλ " Λth (which is necessary to

20Notice that the potential along the S-line can be identified with the result of integrating out the heavy

field S, which is the usual procedure to study the model for h at low energies, i.e. much smaller than |mS |.
Indeed the S-line first appeared in section 2 for matching the SMS at low energies to the SM.
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the appearance of the new scale in the stability conditions for the threshold mechanism

precludes stabilization and, therefore, a different mechanism is required. This could be

provided, for instance, by an additional heavy scalar that is stabilized at the origin. We

have checked that stabilizing the inflationary valleys in this way, the predictions for the

cosmological parameters (including loop corrections) remain extremely close to the tree-

level results with the SM plus the inflaton alone.

We also revisit the idea of Higgs false-vacuum inflation [25, 37], mentioned earlier, and

conclude that it cannot produce successful inflation for the measured values of the SM

couplings. A similar conclusion was already found in [26, 37], and we confirm that the

trouble is related to the tensor-to-scalar ratio r, as argued in [26]. An accurate evaluation

of the energy of the false vacua, compatible with the results of [4], yields a lower bound of

r ! 2 which excludes the result of [43], according to which a value of r compatible with

the latest measurements of Planck could be generated inside the false-vacuum valley.

The paper is organized as follows. In section 2 we introduce the model: the SM coupled

to a singlet through the Higgs portal with a Z2 symmetry, to be referred to as SMS. The

tree-level potential valleys are described in section 3, and the corresponding inflationary

dynamics is analyzed in detail in section 4, discussing the single-field and slow-roll approx-

imations and the generation of curvature perturbations. We devote section 5 to radiative

effects. In section 5.1 we review the RG-improved potential, emphasizing the importance

of the field-independent piece for cosmology. In section 5.2 we analyze the issue of the sta-

bility of the effective potential, and in section 5.3 we study the implications for inflation.

In section 5.4 we study if a coupling of the Higgs to the Ricci scalar can affect the stability

during inflation. In section 5.5, we revisit the scenario of false-vacuum inflation. The con-

clusions are drawn in section 6. In addition, three appendices are provided: section A gives

the two-loop RG equations that we use, section B reviews the matching of the relevant SM

parameters to experimental measurements, and section C contains the details about the

matching between the SM and SMS.

2 Standard Model coupled to a real scalar

We consider the SM coupled to a real singlet S, with a tree-level scalar potential given by

V tree(H,S; δi) = m2
HH†H +

m2
S

2
S2 +

λ

2
(H†H)2 +

λS
4!

S4 +
λSH
2

H†HS2 , (2.1)

where H is the Higgs SU(2) doublet. The symbol δi is used to denote generically the

couplings and squared masses of the model. This encompasses not only the couplings (λ, λS ,

λSH) and the masses (m2
H , m2

S) of the scalar potential (2.1), but also the Yukawa and gauge

couplings of the SM. If a Z2 symmetry is imposed, (2.1) is the most general renormalizable

potential for S and H, excluding an allowed vacuum energy term V0, which can be used

to accommodate the measured value of the cosmological constant Λ ∼ (10−3eV)4. For

practical purposes, we can assume Λ = 0, which does not change our results.5 As we will

5We assume that at the end of inflation the fields come to rest at a minimum of the potential corre-

sponding to the cosmological constant that we measure today. Since this value is many orders of magnitude

smaller than the energy scales involved during inflation we can safely take it to be zero.
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consider are mt, m2
S , λS and λSH . Since we restrict the parameter space of the high energy

model to the region which reproduces the measured Higgs mass, the Higgs quartic and

quadratic couplings in the SMS are not independent of the parameters m2
S ,λS and λSH .

Given the decoupling of the singlet at low energies, in order to match the SM and

the SMS one should demand the equality of the flat spacetime Green functions computed

on both sides of the threshold at which the heavy singlet decouples. When it comes

to the parameters in the scalar potential V (which encodes the Green functions at zero

momentum) the decoupling of S amounts to integrating it out using the zero-momentum

equation of motion. This means that at sufficiently low scales, when quantum fluctuations

of the singlet are suppressed, the field S sits (on average) at the value which minimizes

the potential energy for every h ≡
√
2H0, where H0 is the neutral component of the Higgs

doublet. As mentioned before, we are going to assume that m2
S < 0, which means that

this minimum happens for S2 #= 0. Notice that in principle the Higgs field could also be

stabilized with m2
S > 0 (with S = 0 at the minimum), but in this case the valley supporting

inflation would not extend to large values of h. Inflation would then be exclusively driven

by the field S alone (as in a standard independent single-field model) with no role played

by the Higgs.6 We will later see that for m2
S < 0 successful inflation is actually mostly

driven by S as well, however the couplings of the effective potential that drives inflation in

a single field approximation to the dynamics are affected by those of the Higgs in that case.

After these considerations, the matching of the parameters in the potential can be

done in practice by considering the potential V when the field S is set at the value Smin

that satisfies
dV

dS

∣∣∣∣
S=Smin(h)

= 0 , (2.2)

and demanding

V SM (h; δ̃) = V (h, Smin(h); δ) +O(h6/|m2
S |). (2.3)

In other words, the (one-dimensional) potential in the SM should be understood as the

value of the SMS potential along a line which follows the minima with respect to the field

S. This is the usual basic procedure for integrating out the heavy field at low-energies.

Notice that we denote SM quantities (low-energy) with a tilde to distinguish them from

the SMS ones (high-energy). As indicated, the equality in (2.3) is valid up to terms that

are suppressed by inverse powers of the heavy mass, corresponding to non-renormalizable

terms in a polynomial expansion of the SMS potential.

At tree-level, and writing the SM potential as

V SM = m̃2
H H†H +

λ̃

2
(H†H)2 , (2.4)

taking derivatives of (2.3) with respect to the fields gives the following matching conditions,

m̃2
H = m2

H − 3λSH
λS

m2
S , λ̃ = λ− 3λ2SH

λS
, (2.5)

6If m2
S > 0, successful inflation in the SMS with S playing the role of the inflation would then addition-

ally require a non-minimal coupling to gravity, in order to satisfy current CMB limits [39] on primordial

gravitational waves.
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grows in the directions orthogonal to the bottom of the valleys, the potential along the

lines will provide stringent stability conditions.

The condition (5.21) can be obtained following the potential along the h-line as a

function of the field h. Effectively, this means that we identify the renormalization scale,

µ, with h. This is an appropriate choice to study the potential at sufficiently high energies

(where the instability region is). Assuming that λS > 0 and λSH > 0, the condition

λ̃ = λ − δth > 0 is immediately implied by (3.22). The region of applicability of λ > δth
follows from for the range of scales for which the h-line exists, which is given by (3.21), i.e.

h2 ! 2|m2
H |/λ ∼ Λ2

th, where we have used (2.5) and m̃2
H # m2

H . For scales much larger than

Λth, which are not reached by the h-line, the potential near S = 0 is dominated by the Higgs

quartic and therefore the stability condition reduces to λ > 0, in agreement with (5.21).

Similarly, we can follow the potential along the S-line expressed as a function of h,

given by (3.19), for the same reason as for the h-line. Since the potential along the S-line

reproduces to lowest order the tree-level SM potential,20 absolute stability requires that

the SM quartic coupling must be above zero, i.e. λ̃ > 0. As before, this should occur for

the whole range of scales for which the S-line exists, that is: h2 ! 2|m2
S |/λSH . And again,

for scales much larger than this one, the potential is dominated by the quartic couplings

and the stability condition is simply λ > 0.

Therefore, we see that once we consider the S-line, a new scale enters into the game:

Λ̂2
th ∼ 2|m2

S |
λSH

, (5.23)

which makes explicit the relevance of λSH for the tree-level stabilization mechanism. The

scale Λλ must be larger than both Λth and Λ̂th for the threshold effect to be able to cure the

instability. The stability conditions can then be phrased as follows: the quartic coupling λ

must satisfy

λ(µ) >

{
δth

0
for

µ ! Λ

µ $ Λ
, (5.24)

where the scale Λλ at which the SM quartic Higgs coupling becomes negative must be such

that

Λλ " Λ (5.25)

and we define

Λ ∼ Max
{
Λth , Λ̂th

}
. (5.26)

We can now re-interpret the relation (5.22) and use it to connect the two scales:

Λth ∼ δth
λ

Λ̂th . (5.27)

As we argued above, in the decoupling limit (i.e. λSH → 0) the scale Λth will surpass

Λλ if δth and m2
S are kept fixed, violating the condition Λλ " Λth (which is necessary to

20Notice that the potential along the S-line can be identified with the result of integrating out the heavy

field S, which is the usual procedure to study the model for h at low energies, i.e. much smaller than |mS |.
Indeed the S-line first appeared in section 2 for matching the SMS at low energies to the SM.
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The condition (5.21) can be obtained following the potential along the h-line as a

function of the field h. Effectively, this means that we identify the renormalization scale,

µ, with h. This is an appropriate choice to study the potential at sufficiently high energies

(where the instability region is). Assuming that λS > 0 and λSH > 0, the condition

λ̃ = λ − δth > 0 is immediately implied by (3.22). The region of applicability of λ > δth
follows from for the range of scales for which the h-line exists, which is given by (3.21), i.e.

h2 ! 2|m2
H |/λ ∼ Λ2

th, where we have used (2.5) and m̃2
H # m2

H . For scales much larger than

Λth, which are not reached by the h-line, the potential near S = 0 is dominated by the Higgs

quartic and therefore the stability condition reduces to λ > 0, in agreement with (5.21).

Similarly, we can follow the potential along the S-line expressed as a function of h,

given by (3.19), for the same reason as for the h-line. Since the potential along the S-line

reproduces to lowest order the tree-level SM potential,20 absolute stability requires that

the SM quartic coupling must be above zero, i.e. λ̃ > 0. As before, this should occur for

the whole range of scales for which the S-line exists, that is: h2 ! 2|m2
S |/λSH . And again,

for scales much larger than this one, the potential is dominated by the quartic couplings

and the stability condition is simply λ > 0.

Therefore, we see that once we consider the S-line, a new scale enters into the game:

Λ̂2
th ∼ 2|m2

S |
λSH

, (5.23)

which makes explicit the relevance of λSH for the tree-level stabilization mechanism. The

scale Λλ must be larger than both Λth and Λ̂th for the threshold effect to be able to cure the

instability. The stability conditions can then be phrased as follows: the quartic coupling λ

must satisfy

λ(µ) >

{
δth

0
for

µ ! Λ

µ $ Λ
, (5.24)

where the scale Λλ at which the SM quartic Higgs coupling becomes negative must be such

that

Λλ " Λ (5.25)

and we define

Λ ∼ Max
{
Λth , Λ̂th

}
. (5.26)

We can now re-interpret the relation (5.22) and use it to connect the two scales:

Λth ∼ δth
λ

Λ̂th . (5.27)

As we argued above, in the decoupling limit (i.e. λSH → 0) the scale Λth will surpass

Λλ if δth and m2
S are kept fixed, violating the condition Λλ " Λth (which is necessary to

20Notice that the potential along the S-line can be identified with the result of integrating out the heavy

field S, which is the usual procedure to study the model for h at low energies, i.e. much smaller than |mS |.
Indeed the S-line first appeared in section 2 for matching the SMS at low energies to the SM.
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Stability bounds are usually obtained by demanding absolute stability, i.e. that the

potential does not become smaller than the Higgs vacuum anywhere. Therefore, for the

discussion that follows, we will say that the potential is stable if the minimum correspond-

ing to the Higgs vacuum is the one of lowest potential energy and if the potential does not

develop a runaway behaviour in any direction in field space. If there are other vacua (dif-

ferent from the Higgs one) with higher energy, those minima will be unstable with respect

to the Higgs vacuum (since tunneling to lower energies is always possible, in principle) but

the potential as a whole is deemed stable. By Higgs vacuum we normally refer to the min-

imum of the potential which corresponds to the standard electroweak symmetry breaking

vacuum with v = 246GeV in the low-energy model. Since we arranged for the Higgs vac-

uum to have zero cosmological constant (because for our purposes this makes no practical

difference), the condition of absolute stability is equivalent to requiring that the potential

should be positive (or zero) at all points. With this criterion, we recall that the instability

scale, ΛI , can be defined in the SM with the value of µ = h at which the potential of the

Higgs crosses zero towards negative values, i.e. ΛI ! 5 · 1011GeV as mentioned before.

The stability in the SMS was already discussed in [28, 29]. It was found there that in

addition to the possible stabilizing effect of λSH via the RG running that we mentioned

above, there is a tree-level effect which may be sufficient on its own to guarantee stability

at large h values. The threshold correction

δth = 3
λ2SH
λS

(5.19)

appearing in the matching of the Higgs quartic coupling, see (2.5) and (3.22), plays a key

role in this mechanism.

Concretely, it was argued in [28, 29] that any potential with λSH > 0 (which is the case

of interest for us) can be stabilized by a sufficiently large δth, provided that |m2
S | is smaller

than (roughly) the instability scale (squared) at which the (low-energy) potential becomes

negative. Being careful with factors involving dimensionless couplings, the threshold effect

would stabilize the potential if the scale

Λ2
th ∼ 6

λSH
λSλ

|m2
S | (5.20)

is smaller than Λλ, which is the scale at which the quartic coupling λ̃ becomes negative.18

It was concluded in [29] that in order to have absolute stability from this mechanism, the

quartic coupling λ(µ) should satisfy the following condition19

λ(µ) >

{
δth

0
for

µ ! Λth

µ # Λth

. (5.21)

18The SM instability scale, ΛI , is larger than Λλ. At one-loop order in perturbation theory and taking

the physical Higgs and top masses to be mh = 125.09GeV and mt = 173.15GeV we find ΛI = 5 ·1011 GeV,

whereas Λλ = 8 · 1010 GeV. Clearly, the physically meaningful scale for the stability is ΛI , and the scale Λλ

appears as a consequence of using the approximation of the (RG-improved) tree-level potential.
19In [29] the condition was actually formulated assuming Λth ∼ |m2

S |1/2. Note that this only holds if

6λSH ∼ λSλ, but the meaning of the two scales is different in general. While |m2
S |1/2 gives an estimate of

the regime of validity of the SM (as a low-energy theory), the scale Λth puts a bound to the range where

λ > δth is needed for stability.
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grows in the directions orthogonal to the bottom of the valleys, the potential along the

lines will provide stringent stability conditions.

The condition (5.21) can be obtained following the potential along the h-line as a

function of the field h. Effectively, this means that we identify the renormalization scale,

µ, with h. This is an appropriate choice to study the potential at sufficiently high energies

(where the instability region is). Assuming that λS > 0 and λSH > 0, the condition

λ̃ = λ − δth > 0 is immediately implied by (3.22). The region of applicability of λ > δth
follows from for the range of scales for which the h-line exists, which is given by (3.21), i.e.

h2 ! 2|m2
H |/λ ∼ Λ2

th, where we have used (2.5) and m̃2
H # m2

H . For scales much larger than

Λth, which are not reached by the h-line, the potential near S = 0 is dominated by the Higgs

quartic and therefore the stability condition reduces to λ > 0, in agreement with (5.21).

Similarly, we can follow the potential along the S-line expressed as a function of h,

given by (3.19), for the same reason as for the h-line. Since the potential along the S-line

reproduces to lowest order the tree-level SM potential,20 absolute stability requires that

the SM quartic coupling must be above zero, i.e. λ̃ > 0. As before, this should occur for

the whole range of scales for which the S-line exists, that is: h2 ! 2|m2
S |/λSH . And again,

for scales much larger than this one, the potential is dominated by the quartic couplings

and the stability condition is simply λ > 0.

Therefore, we see that once we consider the S-line, a new scale enters into the game:

Λ̂2
th ∼ 2|m2

S |
λSH

, (5.23)

which makes explicit the relevance of λSH for the tree-level stabilization mechanism. The

scale Λλ must be larger than both Λth and Λ̂th for the threshold effect to be able to cure the

instability. The stability conditions can then be phrased as follows: the quartic coupling λ

must satisfy

λ(µ) >

{
δth

0
for

µ ! Λ

µ $ Λ
, (5.24)

where the scale Λλ at which the SM quartic Higgs coupling becomes negative must be such

that

Λλ " Λ (5.25)

and we define

Λ ∼ Max
{
Λth , Λ̂th

}
. (5.26)

We can now re-interpret the relation (5.22) and use it to connect the two scales:

Λth ∼ δth
λ

Λ̂th . (5.27)

As we argued above, in the decoupling limit (i.e. λSH → 0) the scale Λth will surpass

Λλ if δth and m2
S are kept fixed, violating the condition Λλ " Λth (which is necessary to

20Notice that the potential along the S-line can be identified with the result of integrating out the heavy

field S, which is the usual procedure to study the model for h at low energies, i.e. much smaller than |mS |.
Indeed the S-line first appeared in section 2 for matching the SMS at low energies to the SM.
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The condition (5.21) can be obtained following the potential along the h-line as a

function of the field h. Effectively, this means that we identify the renormalization scale,

µ, with h. This is an appropriate choice to study the potential at sufficiently high energies

(where the instability region is). Assuming that λS > 0 and λSH > 0, the condition

λ̃ = λ − δth > 0 is immediately implied by (3.22). The region of applicability of λ > δth
follows from for the range of scales for which the h-line exists, which is given by (3.21), i.e.

h2 ! 2|m2
H |/λ ∼ Λ2

th, where we have used (2.5) and m̃2
H # m2

H . For scales much larger than

Λth, which are not reached by the h-line, the potential near S = 0 is dominated by the Higgs

quartic and therefore the stability condition reduces to λ > 0, in agreement with (5.21).

Similarly, we can follow the potential along the S-line expressed as a function of h,

given by (3.19), for the same reason as for the h-line. Since the potential along the S-line

reproduces to lowest order the tree-level SM potential,20 absolute stability requires that

the SM quartic coupling must be above zero, i.e. λ̃ > 0. As before, this should occur for

the whole range of scales for which the S-line exists, that is: h2 ! 2|m2
S |/λSH . And again,

for scales much larger than this one, the potential is dominated by the quartic couplings

and the stability condition is simply λ > 0.

Therefore, we see that once we consider the S-line, a new scale enters into the game:

Λ̂2
th ∼ 2|m2
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which makes explicit the relevance of λSH for the tree-level stabilization mechanism. The

scale Λλ must be larger than both Λth and Λ̂th for the threshold effect to be able to cure the

instability. The stability conditions can then be phrased as follows: the quartic coupling λ

must satisfy

λ(µ) >
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δth

0
for

µ ! Λ

µ $ Λ
, (5.24)

where the scale Λλ at which the SM quartic Higgs coupling becomes negative must be such

that

Λλ " Λ (5.25)

and we define

Λ ∼ Max
{
Λth , Λ̂th

}
. (5.26)

We can now re-interpret the relation (5.22) and use it to connect the two scales:

Λth ∼ δth
λ

Λ̂th . (5.27)

As we argued above, in the decoupling limit (i.e. λSH → 0) the scale Λth will surpass

Λλ if δth and m2
S are kept fixed, violating the condition Λλ " Λth (which is necessary to

20Notice that the potential along the S-line can be identified with the result of integrating out the heavy

field S, which is the usual procedure to study the model for h at low energies, i.e. much smaller than |mS |.
Indeed the S-line first appeared in section 2 for matching the SMS at low energies to the SM.
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The condition (5.21) can be obtained following the potential along the h-line as a

function of the field h. Effectively, this means that we identify the renormalization scale,

µ, with h. This is an appropriate choice to study the potential at sufficiently high energies

(where the instability region is). Assuming that λS > 0 and λSH > 0, the condition

λ̃ = λ − δth > 0 is immediately implied by (3.22). The region of applicability of λ > δth
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th, where we have used (2.5) and m̃2
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H . For scales much larger than

Λth, which are not reached by the h-line, the potential near S = 0 is dominated by the Higgs

quartic and therefore the stability condition reduces to λ > 0, in agreement with (5.21).

Similarly, we can follow the potential along the S-line expressed as a function of h,

given by (3.19), for the same reason as for the h-line. Since the potential along the S-line

reproduces to lowest order the tree-level SM potential,20 absolute stability requires that
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, (5.23)

which makes explicit the relevance of λSH for the tree-level stabilization mechanism. The
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must satisfy
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for

µ ! Λ

µ $ Λ
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that
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and we define

Λ ∼ Max
{
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}
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λ
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As we argued above, in the decoupling limit (i.e. λSH → 0) the scale Λth will surpass

Λλ if δth and m2
S are kept fixed, violating the condition Λλ " Λth (which is necessary to

20Notice that the potential along the S-line can be identified with the result of integrating out the heavy

field S, which is the usual procedure to study the model for h at low energies, i.e. much smaller than |mS |.
Indeed the S-line first appeared in section 2 for matching the SMS at low energies to the SM.
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Stability bounds are usually obtained by demanding absolute stability, i.e. that the

potential does not become smaller than the Higgs vacuum anywhere. Therefore, for the

discussion that follows, we will say that the potential is stable if the minimum correspond-

ing to the Higgs vacuum is the one of lowest potential energy and if the potential does not

develop a runaway behaviour in any direction in field space. If there are other vacua (dif-

ferent from the Higgs one) with higher energy, those minima will be unstable with respect

to the Higgs vacuum (since tunneling to lower energies is always possible, in principle) but

the potential as a whole is deemed stable. By Higgs vacuum we normally refer to the min-

imum of the potential which corresponds to the standard electroweak symmetry breaking

vacuum with v = 246GeV in the low-energy model. Since we arranged for the Higgs vac-

uum to have zero cosmological constant (because for our purposes this makes no practical

difference), the condition of absolute stability is equivalent to requiring that the potential

should be positive (or zero) at all points. With this criterion, we recall that the instability

scale, ΛI , can be defined in the SM with the value of µ = h at which the potential of the

Higgs crosses zero towards negative values, i.e. ΛI ! 5 · 1011GeV as mentioned before.

The stability in the SMS was already discussed in [28, 29]. It was found there that in

addition to the possible stabilizing effect of λSH via the RG running that we mentioned

above, there is a tree-level effect which may be sufficient on its own to guarantee stability

at large h values. The threshold correction

δth = 3
λ2SH
λS

(5.19)

appearing in the matching of the Higgs quartic coupling, see (2.5) and (3.22), plays a key

role in this mechanism.

Concretely, it was argued in [28, 29] that any potential with λSH > 0 (which is the case

of interest for us) can be stabilized by a sufficiently large δth, provided that |m2
S | is smaller

than (roughly) the instability scale (squared) at which the (low-energy) potential becomes

negative. Being careful with factors involving dimensionless couplings, the threshold effect

would stabilize the potential if the scale

Λ2
th ∼ 6

λSH
λSλ

|m2
S | (5.20)

is smaller than Λλ, which is the scale at which the quartic coupling λ̃ becomes negative.18

It was concluded in [29] that in order to have absolute stability from this mechanism, the

quartic coupling λ(µ) should satisfy the following condition19

λ(µ) >

{
δth

0
for

µ ! Λth

µ # Λth

. (5.21)

18The SM instability scale, ΛI , is larger than Λλ. At one-loop order in perturbation theory and taking

the physical Higgs and top masses to be mh = 125.09GeV and mt = 173.15GeV we find ΛI = 5 ·1011 GeV,

whereas Λλ = 8 · 1010 GeV. Clearly, the physically meaningful scale for the stability is ΛI , and the scale Λλ

appears as a consequence of using the approximation of the (RG-improved) tree-level potential.
19In [29] the condition was actually formulated assuming Λth ∼ |m2

S |1/2. Note that this only holds if

6λSH ∼ λSλ, but the meaning of the two scales is different in general. While |m2
S |1/2 gives an estimate of

the regime of validity of the SM (as a low-energy theory), the scale Λth puts a bound to the range where

λ > δth is needed for stability.
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