CP violation in kaon mixing towards a better precision?

Filippo Sala

LPTHE Paris and CNRS

RPP, Annecy, 26 Jan 2016

My talk in one slide

 \rightarrow CP violation in Kaon mixing (ϵ_K) = observable sensitive to the highest CP and flavour violating scales

Flavour in the SM and beyond

$$\frac{\text{"SM flavour problem"}}{|V_{\mathsf{CKM}}|} \sim \begin{pmatrix} 1 & 0.2 & 4 \cdot 10^{-3} \\ 0.2 & 1 & 4 \cdot 10^{-2} \\ 9 \cdot 10^{-3} & 4 \cdot 10^{-2} & 1 \end{pmatrix}$$
$$(y_u, y_c, y_t) \sim (10^{-6}, 10^{-2}, 1) \qquad (y_d, y_s, y_b) \sim (10^{-5}, 10^{-3}, 10^{-2})$$

Is there a UV reason behind this pattern?

Where can we test it?

Flavour in the SM and beyond

$$\frac{\text{"SM flavour problem"}}{|V_{\mathsf{CKM}}|} \sim \begin{pmatrix} 1 & 0.2 & 4 \cdot 10^{-3} \\ 0.2 & 1 & 4 \cdot 10^{-2} \\ 9 \cdot 10^{-3} & 4 \cdot 10^{-2} & 1 \end{pmatrix}$$
$$(y_u, y_c, y_t) \sim (10^{-6}, 10^{-2}, 1) \qquad (y_d, y_s, y_b) \sim (10^{-5}, 10^{-3}, 10^{-2})$$

Is there a UV reason behind this pattern?

Where can we test it?

$$\mathcal{L}_{\mathrm{NP}} = \sum_{i} \frac{1}{\Lambda_{i}^{2}} \mathcal{O}_{i} \Rightarrow \boxed{\Lambda_{i} \gtrsim 10^{4} \div 10^{5} \, \mathrm{TeV}}$$

Flavour in the SM and beyond

$$\frac{\text{"SM flavour problem"}}{|V_{\mathsf{CKM}}|} \sim \begin{pmatrix} 1 & 0.2 & 4 \cdot 10^{-3} \\ 0.2 & 1 & 4 \cdot 10^{-2} \\ 9 \cdot 10^{-3} & 4 \cdot 10^{-2} & 1 \end{pmatrix}$$
$$(y_u, y_c, y_t) \sim (10^{-6}, 10^{-2}, 1) \qquad (y_d, y_s, y_b) \sim (10^{-5}, 10^{-3}, 10^{-2})$$

Is there a UV reason behind this pattern?

Where can we test it?

"NP flavour problem"

$$\mathcal{L}_{\mathrm{NP}} = \sum_{i} \frac{1}{\Lambda_{i}^{2}} \mathcal{O}_{i} \Rightarrow \boxed{\Lambda_{i} \gtrsim 10^{4} \div 10^{5} \, \mathrm{TeV}}$$

- ② lowers expectations to solve SM flavour problem
- © clashes with natural solution to hierarchy problem

What are the most sensitive observables?*

*besides electric dipole moments

$$\mathcal{L}_{\mathrm{NP}} = \sum_{i} \frac{1}{\Lambda_{i}^{2}} \mathcal{O}_{i} \qquad \qquad \mathcal{O}_{1} = (\bar{d}_{L} \gamma_{\mu} s_{L})^{2}, \, \mathcal{O}_{2} = (\bar{d}_{R} s_{L})^{2}, \, \mathcal{O}_{3} = (\bar{d}_{R}^{\alpha} s_{L}^{\beta}) (\bar{d}_{R}^{\beta} s_{L}^{\alpha})$$

$$\mathcal{O}_{4} = (\bar{d}_{R} s_{L}) (\bar{d}_{L} s_{R}), \, \mathcal{O}_{5} = (\bar{d}_{R}^{\alpha} s_{L}^{\beta}) (\bar{d}_{L}^{\beta} s_{R}^{\alpha})$$

[Disclaimer: focus on $\Delta F = 2$ processes]

General Message: intensity (flavour) frontier probes scales ≫ TeV

Higher energies are probed by $\epsilon_{\mathcal{K}}$ (= CP violation in Kaon mixing)

Interplay with energy frontier (LHC)? Needs specification of new physics models

Filippo Sala LPTHE Paris

Two (most popular) flavour pictures

Assume New Physics at scale $\wedge \sim 1 - 10$ TeV:

$$\mathcal{L}_{\mathrm{NP}} = \sum_i \xi_i rac{c_i}{\Lambda^2} \mathcal{O}_i ~~ c_i \sim \emph{O}(1) ~~ \xi_i$$
 small due to some "feature"

Two (most popular) flavour pictures

Assume New Physics at scale $\Lambda \sim 1-10$ TeV:

$$\mathcal{L}_{\mathrm{NP}} = \sum_i \xi_i rac{c_i}{\Lambda^2} \mathcal{O}_i ~~ c_i \sim \mathit{O}(1) ~~ \xi_i$$
 small due to some "feature"

CKM-like symmetries

Flavour symmetry $(U(3)^3 \text{ or } U(2)^3)$ controls NP effects

SM understanding only parametrical $(U(3)^3)$ or partly addressed $(U(2)^3)$

Partial compositeness

SM quarks mix with composite operators + anarchic flavour in composite sector

 $V_{\rm CKM}$ elements related to quark masses:

$$y_i \sim \epsilon_i^L \epsilon_i^R$$
, $(V_{\text{CKM}})_{ij} \sim \epsilon_i^L / \epsilon_j^L$

D'Ambrosio et al. 2002, Barbieri et al. 2011

Kaplan 1991, Contino et al 2006, ...

Filippo Sala LPTHE Paris

CP violation in kaon mixing

Two (most popular) flavour pictures

Assume New Physics at scale $\Lambda \sim 1 - 10$ TeV:

$$\mathcal{L}_{\mathrm{NP}} = \sum_{i} \xi_{i} \frac{c_{i}}{\Lambda^{2}} \mathcal{O}_{i}$$
 $c_{i} \sim \textit{O}(1)$ ξ_{i} small due to some "feature"

CKM-like symmetries

Flavour symmetry $(U(3)^3 \text{ or } U(2)^3)$ controls NP effects

SM understanding only parametrical $(U(3)^3)$ or partly addressed $(U(2)^3)$

Only those \mathcal{O}_i present in the SM [e.g. NO $\mathcal{O}_i = (\bar{s}_L d_R)(\bar{s}_R d_L)$]

Same SM suppression, i.e. $\xi \sim V_{\it CKM}^{2-4}$

$$\Lambda \gtrsim$$
 3 TeV $(\epsilon_K \sim B - ar{B})$

D'Ambrosio et al. 2002, Barbieri et al. 2011 Barbieri Buttazzo Sala Straub 2012, 2014

LPTHE Paris

Filippo Sala

Partial compositeness

SM quarks mix with composite operators + anarchic flavour in composite sector

 $V_{
m CKM}$ elements related to quark masses:

$$y_i \sim \epsilon_i^L \epsilon_i^R$$
, $(V_{\text{CKM}})_{ij} \sim \epsilon_i^L / \epsilon_j^L$

All \mathcal{O}_i allowed: SM ones have $\xi \sim V_{\mathit{CKM}}^{2-4}$

 $\Lambda \geq 15 \text{ TeV } (\epsilon_K), 3 \text{ TeV } (B - \bar{B})$

others have
$$\xi \sim y_i y_j / V_{CKM}^{2-4}$$

Kaplan 1991, Contino et al 2006, ... Barbieri Buttazzo Sala Straub Tesi 2012

CP violation in kaon mixing

Flavour scale and new resonances at the LHC

Partial compositeness $\Lambda \simeq m_{\rho,T}$ $\Lambda \gtrsim 15 \text{ or } 3 \text{ TeV} \rightarrow \text{No NP at the LHC}.$

CKM-like symmetries

- implement in composite models (flavour violation at tree level)
 - ightarrow if $U(2)^3$ then $m_T \sim 1$ TeV , if $U(3)^3$ then $m_T \gg 1$ TeV
- implement in supersymmetry (flavour violation at loop level)
 - \rightarrow both $U(2)^3$ and $U(3)^3$: stops and gluinos within LHC8-13 reach

Flavour scale and new resonances at the LHC

Partial compositeness $\Lambda \simeq m_{\rho,T}$ $\Lambda \gtrsim 15 \text{ or } 3 \text{ TeV} \rightarrow \text{No NP at the LHC}.$

CKM-like symmetries

- implement in composite models (flavour violation at tree level)
 - \rightarrow if $U(2)^3$ then $m_T \sim 1$ TeV, if $U(3)^3$ then $m_T \gg 1$ TeV
- implement in supersymmetry (flavour violation at loop level)
 - \rightarrow both $U(2)^3$ and $U(3)^3$: stops and gluinos within LHC8-13 reach

Flavour and CP violation best protected in SUSY- $U(2)^3$: sparticles at the LHC?

All points allowed by LHC8 sparticle searches

[Dashed: $\Delta F = 2$ fit]

Dark: conservative exclusions Light: compressed spectra, ...

All points allowed by LHC8 sparticle searches

Dark: conservative exclusions Light: compressed spectra, ...

What if no sparticles at LHC14?

 ϕ_s LHCb aims at $\pm 0.01 \div 0.03$ [now ± 0.07] $\Delta M_{d,s}$ expected lattice improvements

€K how will it progress? LPTHE Paris Filippo Sala

CP violation in kaon mixing

Impact of flavour on future of particle physics?

Some expected progresses in flavour:

CKMfitter + Ligeti, Papucci 1309.2293

	2003	2013	Stage I		Stage II
$ V_{ud} $	0.9738 ± 0.0004	$0.97425 \pm 0 \pm 0.00022$	id		id
$ V_{us} \ (K_{\ell 3})$	$0.2228 \pm 0.0039 \pm 0.0018$	$0.2258 \pm 0.0008 \pm 0.0012$	0.22494 ± 0.0006		id
$ \epsilon_K $	$(2.282 \pm 0.017) \times 10^{-3}$	$(2.228 \pm 0.011) \times 10^{-3}$	id		id
$\Delta m_d [ps^{-1}]$	0.502 ± 0.006	0.507 ± 0.004	id		id
$\Delta m_s [\mathrm{ps}^{-1}]$	> 14.5 [95% CL]	17.768 ± 0.024	id		id
$ V_{cb} \times 10^3 \ (b \to c\ell\bar{\nu})$	$41.6 \pm 0.58 \pm 0.8$	$41.15 \pm 0.33 \pm 0.59$	42.3 ± 0.4	[17]	42.3 ± 0.3
$ V_{ub} \times 10^3 \ (b \to u \ell \bar{\nu})$	$3.90 \pm 0.08 \pm 0.68$	$3.75 \pm 0.14 \pm 0.26$	3.56 ± 0.10	[17]	3.56 ± 0.08
$\sin 2\beta$	0.726 ± 0.037	0.679 ± 0.020	0.679 ± 0.016	[17]	0.679 ± 0.008
$\alpha \pmod{\pi}$	_	$(85.4^{+4.0}_{-3.8})^{\circ}$	$(91.5 \pm 2)^{\circ}$	[17]	$(91.5 \pm 1)^{\circ}$
$\gamma \pmod{\pi}$	_	$(68.0^{+8.0}_{-8.5})^{\circ}$	$(67.1 \pm 4)^{\circ}$	[17, 18]	$(67.1 \pm 1)^{\circ}$
β_s	_	$0.0065^{+0.0450}_{-0.0415}$	0.0178 ± 0.012	[18]	0.0178 ± 0.004

Stage
$$I = 7 \text{ fb}^{-1} \text{ LHCb} + 5 \text{ fb}^{-1} \text{ Belle-II}$$
, Stage $II = 50 \text{ fb}^{-1} \text{ LHCb} + \text{Belle-II}$

Example: $\phi_s = \phi_s^{\Delta} - 2|\beta_s|$ of SUSY slide

Impact of flavour on future of particle physics?

Some expected progresses in flavour:

CKMfitter + Ligeti, Papucci 1309.2293

	2003	2013	Stage I		Stage II		
$ V_{ud} $	0.9738 ± 0.0004	$0.97425 \pm 0 \pm 0.00022$	id		id		
$ V_{us} $ $(K_{\ell 3})$	$0.2228 \pm 0.0039 \pm 0.0018$	$0.2258 \pm 0.0008 \pm 0.0012$	0.22494 ± 0.0006		id		
$ \epsilon_K $	$(2.282 \pm 0.017) \times 10^{-3}$	$(2.228 \pm 0.011) \times 10^{-3}$	id		id		
$\Delta m_d [\mathrm{ps}^{-1}]$	0.502 ± 0.006	0.507 ± 0.004	id		id		
Δm_s [ps ⁻¹]	> 14.5 [95% CL]	17.768 ± 0.024	id		id		
$ V_{cb} \times 10^3 \ (b \to c \ell \bar{\nu})$	$41.6 \pm 0.58 \pm 0.8$	$41.15 \pm 0.33 \pm 0.59$	42.3 ± 0.4	[17]	42.3 ± 0.3		
$ V_{ub} \times 10^3 \ (b \to u \ell \bar{\nu})$	$3.90 \pm 0.08 \pm 0.68$	$3.75 \pm 0.14 \pm 0.26$	3.56 ± 0.10	[17]	3.56 ± 0.08		
$\sin 2\beta$	0.726 ± 0.037	0.679 ± 0.020	0.679 ± 0.016	[17]	0.679 ± 0.008		
$\alpha \pmod{\pi}$	_	$(85.4^{+4.0}_{-3.8})^{\circ}$	$(91.5 \pm 2)^{\circ}$	[17]	$(91.5 \pm 1)^{\circ}$		
$\gamma \pmod{\pi}$	_	$(68.0^{+8.0}_{-8.5})^{\circ}$	$(67.1 \pm 4)^{\circ}$	[17, 18]	$(67.1 \pm 1)^{\circ}$		
β_s	_	$0.0065^{+0.0450}_{-0.0415}$	0.0178 ± 0.012	[18]	0.0178 ± 0.004		

Stage
$$I = 7 \text{ fb}^{-1} \text{ LHCb} + 5 \text{ fb}^{-1} \text{ Belle-II}$$
, Stage $II = 50 \text{ fb}^{-1} \text{ LHCb} + \text{Belle-II}$

Till now ϵ_K played a leading role, both in general and in specific models!

What about the future of ϵ_K ?

$\epsilon_K = \mathsf{CP} \ \mathsf{violation} \ \mathsf{in} \ \mathsf{Kaon} \ \mathsf{mixing}$

$$\epsilon_K \equiv \frac{\mathcal{A}\left(K_L \to (\pi\pi)_{I=0}\right)}{\mathcal{A}\left(K_S \to (\pi\pi)_{I=0}\right)}$$

$$|\epsilon_K|_{\exp} = \left(2.228 \ \pm \ 0.011\right) \times 10^{-3} \quad |\epsilon_K|_{\mathrm{SM}} = \left(2.0^{(*)} \ \pm \ 0.3\right) \times 10^{-3}$$
(*) inputs from CKM fit without ϵ_K

Progress is needed in the SM determination of $\epsilon_{\mathcal{K}}!$

$\epsilon_K = \mathsf{CP}$ violation in Kaon mixing

$$\epsilon_K \equiv \frac{\mathcal{A}(K_L \to (\pi\pi)_{I=0})}{\mathcal{A}(K_S \to (\pi\pi)_{I=0})}$$

$$|\epsilon_K|_{\exp} = (2.228 \pm 0.011) \times 10^{-3} \quad |\epsilon_K|_{\mathrm{SM}} = (2.0^{(*)} \pm 0.3) \times 10^{-3}$$
(*) inputs from CKM fit without ϵ_K

Progress is needed in the SM determination of ϵ_K !

Master formula for ϵ_K

$$|\epsilon_{K}|_{\mathrm{SM}} = k_{\epsilon} C_{\epsilon} \hat{B}_{K} |V_{cb}|^{2} \lambda^{2} \bar{\eta} \left(|V_{cb}|^{2} (1 - \bar{\rho}) \eta_{tt} S_{0}(x_{t}) + \eta_{ct} S_{0}(x_{t}, x_{c}) - \eta_{cc} x_{c} \right)$$

 k_{ϵ} summarises long distance and absorptive contribution

Buras Guadagnoli Isidori 1002.3612

Budget error of ϵ_K in the Standard Model

$$|\epsilon_K|_{\mathrm{SM}} = k_{\epsilon} C_{\epsilon} \hat{B}_K |V_{cb}|^2 \lambda^2 \bar{\eta} \left(|V_{cb}|^2 (1 - \bar{\rho}) \eta_{tt} S_0(x_t) + \eta_{ct} S_0(x_t, x_c) - \eta_{cc} x_c \right)$$

$\left \frac{\Delta \epsilon_K}{\epsilon_K} \right _{X=}$				m_t				P	^c K total
$ V_{cb} _{\text{comb}}$	11.1%	7.4%	4.1%	2.0~%	1.7%	1.1%	4.7%	2.5%	15%
$ V_{cb} _{\rm incl}$	6.5%	7.1%	3.9%	2.0~%	1.7%	1.1%	4.7%	2.6%	12%

$$|V_{cb}|_{\text{comb}} = (41.1 \pm 1.3) \times 10^{-3}$$
 $|V_{cb}|_{\text{incl}} = (42.21 \pm 0.78) \times 10^{-3}$

 $\eta_{cc}=1.87\pm0.76$ NNLO in Brod Gorbhan 1008.2036 series converges badly!

Budget error of ϵ_K in the Standard Model

$$|\epsilon_K|_{\mathrm{SM}} = k_{\epsilon} C_{\epsilon} \hat{B}_K |V_{cb}|^2 \lambda^2 \bar{\eta} \left(|V_{cb}|^2 (1-\bar{\rho}) \eta_{tt} S_0(x_t) + \eta_{ct} S_0(x_t, x_c) - \eta_{cc} x_c \right)$$

$\left \frac{\Delta \epsilon_K}{\epsilon_K} \right _{X=0}$	$ V_{cb} $	η_{cc}	η_{ct}	m_t	$k_{\epsilon}^{\rm obs}$	$k_{\epsilon}^{\mathrm{lat}}$	$ar{\eta}$	$ar{ ho}$	$\left \frac{\Delta \epsilon_K}{\epsilon_K} \right _{ ext{total}}$
$ V_{ab} _{comb}$	11.1%	7.4%	4.1%	2.0 %	1.7%	1.1%	4.7%	2.5%	15%
$ V_{cb} _{\mathrm{incl}}$	6.5%	7.1%	3.9%	2.0~%	1.7%	1.1%	4.7%	2.6%	12%

$$|V_{cb}|_{\text{comb}} = (41.1 \pm 1.3) \times 10^{-3}$$
 $|V_{cb}|_{\text{incl}} = (42.21 \pm 0.78) \times 10^{-3}$

 $\eta_{cc}=1.87\pm0.76$ NNLO in Brod Gorbhan 1008.2036 series converges badly!

Future?

$$\Delta V_{cb} \longrightarrow 0.3 \times 10^{-3} \ \Rightarrow \ \Delta \epsilon_K / \epsilon_K \sim 2.5\%$$
 then η_{cc} even more important!

Stay tuned: a way to get rid of η_{cc} uncertainty Ligeti Sala to appear

Take-home message

based on work in SM to appear soon w/Ligeti and on completed works in NP, w/Barbieri Buttazzo and Straub

- ightarrow CP violation in Kaon mixing (ϵ_K)
 - observable sensitive to the highest
 CP and flavour violating scales

 $ightarrow \Delta \epsilon_K|_{
m exp} < 1\%$ $\Delta \epsilon_K|_{
m theory} > 10\%$ we have to improve the SM determination!

$\left \frac{\Delta \epsilon_K}{\epsilon_K} \right _{X=}$	$ V_{cb} $	η_{cc}	η_{ct}	m_t	$k_{\epsilon}^{\rm obs}$	ϵ	$ar{\eta}$	P	$\frac{\Delta \epsilon_K}{\epsilon_K}$ total
$ V_{cb} _{\text{comb}}$	11.1%	7.4%	4.1%	2.0 %	1.7%	1.1%	4.7%	2.5%	15%
$ V_{cb} _{\rm incl}$	6.5%	7.1%	3.9%	2.0~%	1.7%	1.1%	4.7%	2.6%	12%

the importance of η_{cc} is somehow overlooked in the community: what are the prospects for improvement? feedback encouraged

Back up