Short-distance QCD corrections to $K\bar{K}$ mixing in Left-Right Models

[Bernard, Descotes-Genon, LVS - arXiv:1512.00543 [hep-ph]]

Luiz Vale Silva

LPT/IPN/Université Paris-Sud & CNRS in collaboration with V. Bernard (IPN) and S. Descotes-Genon (LPT) Rencontre de Physique des Particules, Annecy

January 26th, 2016

▶ Many possible extensions to SM...

- Many possible extensions to SM...
- ► Left-Right Models (LRM): explain the chiral nature of the SM from the breakdown of a higher-scale parity-sym. th.

$$SU(2)_L \times SU(2)_R \times U(1)$$

 $\downarrow \mu_R$
 $SU(2)_L \times U(1)_Y$

- Many possible extensions to SM...
- ► Left-Right Models (LRM): explain the chiral nature of the SM from the breakdown of a higher-scale parity-sym. th.
- Manifestations: weak right-handed currents (W'), new scalar degrees of freedom $(H^0, H^{\pm}, ...)$, etc.

$$SU(2)_L \times SU(2)_R \times U(1) \qquad W' \qquad d_R \qquad H^0 \qquad d$$

$$SU(2)_L \times U(1)_Y \qquad W' \qquad s$$

- ▶ Many possible extensions to SM...
- ► Left-Right Models (LRM): explain the chiral nature of the SM from the breakdown of a higher-scale parity-sym. th.
- Manifestations: weak right-handed currents (W'), new scalar degrees of freedom (H⁰, H[±], ...), etc.
- ▶ Direct searches, EW precision tests, flavor observables,... test their viability and structure

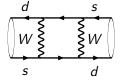
$$SU(2)_{L}\times SU(2)_{R}\times U(1) \qquad W' \qquad d_{R} - H^{0} \qquad M_{W'}, M_{H}\propto \mu_{R} \\ SU(2)_{L}\times U(1)_{Y} \qquad \qquad \mu_{R}\gtrsim 1 \text{ TeV}$$

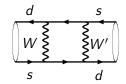
- Many possible extensions to SM...
- ► Left-Right Models (LRM): explain the chiral nature of the SM from the breakdown of a higher-scale parity-sym. th.
- Manifestations: weak right-handed currents (W'), new scalar degrees of freedom (H⁰, H[±], ...), etc.
- Direct searches, EW precision tests, flavor observables,...
 test their viability and structure
- ▶ In particular, LRM are strongly constrained by $K\bar{K}$ mixing observables

$$SU(2)_L \times SU(2)_R \times U(1)$$
 W' d_R H^0 $M_{W'}$, $M_H \propto \mu_R$ $\mu_R \gtrsim 1 \text{ TeV}$

$K\bar{K}$ mixing

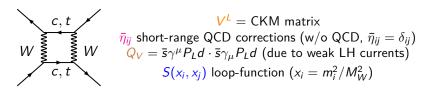
- \blacktriangleright Accurate measurements: ex. $\frac{\delta|\varepsilon_K|_{exp}}{|\varepsilon_K|_{exp}}\sim 0.5~\%$ [PDG14]
- ▶ Good theo. control in SM: ex. $\frac{\delta|\varepsilon_K|_{\rm SM}}{|\varepsilon_K|_{\rm SM}}\sim 20$ % [CKMfitter15]
- ► LRM: introduce potentially large effects
 - (a) loop diagrams, including W' and H^{\pm} exchanges
 - (b) tree-level diagrams, heavy neutral Higgs(es) H^0





SM contribution to $K\bar{K}$ mixing

$$\mathcal{H}_{\mathrm{eff}}^{\mathrm{SM}} = G_F^2 \sum_{i=c,t} \sum_{j=c,t} \frac{V_{is}^L}{V_{is}^L} \frac{V_{id}^{L*}}{V_{js}^L} \frac{V_{jd}^{L*}}{V_{jd}^L} \frac{S(x_i,x_j)}{\bar{\eta}_{ij}} \frac{\bar{q}_{V}}{Q_V} + h.c., \quad \text{(after GIM)}$$



Loop-functions (Inami-Lim): sensitive to the internal d.o.f.

$$\begin{array}{c|cccc} i,j & t,t & c,t & c,c \\ \hline S(x_i,x_j) & x_t & x_c, \text{ and (large) } \log(x_c) & x_c \end{array}$$

Short-distance QCD corrections

Many scales in $\langle \mathcal{H}_{\mathrm{eff}}^{\mathrm{SM}} \rangle$: $\mathbf{m_c}$, $\mathbf{m_t}$, $\mathbf{M_W}$, and the scale $\mu_{\mathrm{had}} = \mu_{\mathrm{low}}$ where $\langle K|Q|\bar{K} \rangle$ is calculated on the Lattice

Factorization long/short dist.:
$$\mathcal{H} = \mathcal{C}(\mu) \cdot \mathcal{Q}(\mu)$$

$$\mathcal{C}(\mu_{\text{high}}) \text{ at high energies}$$

$$\langle \mathcal{Q}(\mu_{\text{low}}) \rangle \text{ at low energies}$$

$$\mathcal{C}(\mu_{\text{high}}) = \bar{\eta} \mathcal{C}(\mu_{\text{high}})$$

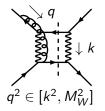
- $\bar{\eta} = 1 + \mathcal{O}(\alpha_s)$ collects the QCD effect of $\mu_{\rm high} \to \mu_{\rm low}$
- ▶ Large $\alpha_s \cdot \log((\mathbf{m_c}/\mathbf{M_W})^2)$ resummed to all orders by RGE, schematically: $\bar{\eta} = 1 + \Sigma_n(\alpha_s \cdot \log)^n + \dots$
- ullet $ar{\eta}$ very eq from 1, impacting pheno. constraints[Buras et al, Nierste et al]

Two methods to compute $\bar{\eta}$:

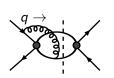
- "Method of Regions" (MR): main QCD effects [Shifman et al, Vysotskii]
- ► EFT: build effect. th. valid at lower energies [Gilman, Wise]

"Method of Regions" (MR)

Resum large $\alpha_s \cdot \log$ to compute $\bar{\eta}$ in an **approximated** way



- \triangleright Fix k of box
- ▶ Identify range of q providing large $\alpha_s \cdot \log$
- Over this range, product of two $|\Delta S|=1$ ops. of anom. dim. (AD) γ

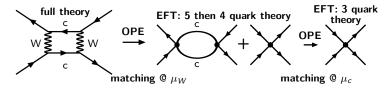


- ▶ Resum large $\alpha_s \cdot \log$ to all orders w/ RGE $\left(\frac{\alpha_s(M_W^2)}{\alpha_s(k^2)}\right)^{\gamma} \stackrel{\text{LO}}{=} \left[\sum_{n=0}^{\infty} \left(\beta_0 \frac{\alpha_s(k^2)}{4\pi} \log \left(\frac{k^2}{M_W^2}\right)\right)^n\right]^{\gamma}$
- ightharpoonup Finally, integrate over the relevant range k

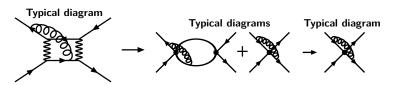
Initially designed to the Leading Log for SM [Shifman et al, Vysotskii] Considered for the LRM @ LL [Frere, Bigi, Grimus, Ecker, Maiezza et al] Extension to the NLL investigated [Bernard, Descotes-Genon, LVS]

EFT method

energy scales < masses of a set of degrees of freedom



$$RGE: d(C_1, C_2, \ldots)/d \log(\mu) = \gamma^{T} \cdot (C_1, C_2, \ldots) \Rightarrow C_i(\mu_{low})$$



- Large nb. of 2-loop diagrams for matchings and AD
- ▶ In $D = 4 \epsilon$ dim., need to include extra (evanescent) ops.

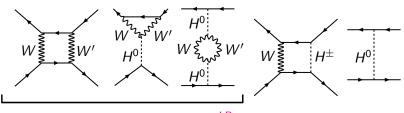
Comparison MR and EFT for SM

SM	η_{tt}	η_{ct}
Leading Log	$(\alpha_s \cdot \log(x_c))^n$	$\log(x_c)\cdot(\alpha_s\cdot\log(x_c))^n$
Next-to-LL	$\alpha_s \cdot (\alpha_s \cdot \log(x_c))^n$ $(\alpha_s \cdot \log(x_c))^n$	
MR (LL, NLL)	0.598 + 0.028 = 0.626	0.345 - 0.011 = 0.334
EFT (LL, NLL)	0.612 - 0.038 = 0.574	0.368 + 0.099 = 0.467

For η_{cc} : same expressions MR and EFT (EFT values [Buras et al])

- Generally, MR values are at good agreement w/ EFT
- ▶ 30 % agreement of MR w/ EFT @ NLL when large logarithms are present in the loop-function (Inami-Lim)

LRM corrections to $K\bar{K}$ mixing



gauge inv. set [Basecq et al, Soni et al] $\Rightarrow S^{LR}$

$$\beta G_F^2 \frac{g_R^2}{g_L^2} \sum_{i=c,t} \sum_{j=c,t} V_{is}^L \frac{V_{id}^{R*}}{V_{id}^*} \frac{V_{js}^R}{V_{jd}^*} \frac{S^{LR}}{S^{LR}}(x_i, x_j, \beta, \omega) \bar{\eta}_{ij}^{LR} \frac{Q_2^{LR}}{Q_2^*} + h.c.,$$

Where V^R is the RH analogous of the CKM matrix,

$$\beta = \left(\frac{M_W}{M_{W'}}\right)^2$$
, $\omega = \left(\frac{M_{W'}}{M_H}\right)^2$, $Q_2^{LR} = \bar{s}P_Ld \cdot \bar{s}P_Rd$ (weak RH curr.)

Results for MR

Same overall strategy compared to the SM, but

- ▶ Other high scales, $M_{W'}$, M_H
- ► More diagrams to consider
- Different operators (w/ known anom. dim.)

LRM	$ar{\eta}_{tt}^{LR}$	$ar{\eta}_{ct}^{LR}$	$ar{\eta}_{cc}^{LR}$
LL	$(\alpha_s \cdot \log(x_c))^n$	$(\alpha_s \cdot \log(x_c))^n$	$\log(x_c)\cdot(\alpha_s\cdot\log(x_c))^n$
NLL	$\alpha_s \cdot (\alpha_s \cdot \log(x_c))^n$	$\alpha_s \cdot (\alpha_s \cdot \log(x_c))^n$	$(\alpha_s \cdot \log(x_c))^n$
MR (NLL)	5.9 ± 2.0	2.74 ± 0.87	1.35 ± 0.44

$$(M_{W'} = 1 \text{ TeV}, M_{W'}^2/M_H^2 = 0.1, \mu_{\text{had}} = 1 \text{ GeV})$$

- We add a conservative 30 % error inspired in the comparison MR/EFT in the SM
- ▶ Loop-function for cc includes a $log(x_c)$: we do not expect in this case a good result (cf. SM for η_{ct})

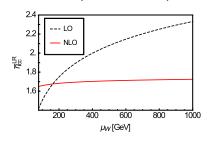
Results for EFT: $\bar{\eta}_{cc}^{\mathrm{LR}}$

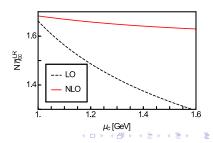
NLL for full th., and 5-, 4-, 3-th. matchings and anom. dims.:

$$LL: 1.41 \rightarrow NLL: 1.65$$
 $\bar{\eta}_{cc}^{\mathrm{LR}} = 1.65 \pm 0.33$ (cf. $\bar{\eta}_{cc}^{\mathrm{LR}}|_{MR} = 1.35 \pm 0.44$)

Important checks:

- ▶ Weak dependence on renormalization scales
- Independence on QCD gauge and IR reg. parameters
- ▶ Independence on particular choice of the op. basis [Nierste et al]





Conclusions

- ► Kaon meson-mixing provides valuable information to probe the structure of LRM: scales,...
- ▶ Short-distance corrections from QCD for reliable bounds
- In the SM, two methods in the literature MR: simplified method, easy when AD already known EFT: more formal method, requiring two-loop computations
- ► They are employed in the LRM [Bernard, Descotes-Genon, LVS]

$$\bar{\eta}_{tt}^{\text{LR}} = 5.9 \pm 2.0 \quad (MR)$$
 $\bar{\eta}_{ct}^{\text{LR}} = 2.74 \pm 0.87 \quad (MR)$
 $\bar{\eta}_{cc}^{\text{LR}} = 1.65 \pm 0.33 \quad (EFT)$

Next: perform a pheno. analysis of LRM w/ doublets based on meson mixing and other constraints