DARK MATTER & LOCALIZED FERMIONS ON

SPHERICAL ORBIFOLDS ?

Nicolas Deutschmann

Based on [1601.00081]

with Giacomo Cacciapaglia and Aldo Deandrea

Rencontres de Physique des Particules January 26, 2016

A brief history of a nice idea

A brief history of a nice idea

Theorem

There are many compact 2D manifolds!

Theorem

There are many compact 2D manifolds!

Impossible to do a complete survey of geometries

Theorem

There are many compact 2D manifolds!

- Impossible to do a complete survey of geometries
- Much more realistic: all topologies

Theorem

There are many compact 2D manifolds!

- Impossible to do a complete survey of geometries
- Much more realistic: all topologies

Theorem (a real one)

All possible topologies for 2D spaces are realized by spaces of the form

$$\mathbb{R}^2/G$$
, S^2/G , \mathbb{H}^2/G

Theorem

There are many compact 2D manifolds!

- Impossible to do a complete survey of geometries
- Much more realistic: all topologies

Theorem (a real one)

All possible topologies for 2D spaces are realized by spaces of the form

 $S^2/G, \mathbb{H}^2/G$

Theorem

There are many compact 2D manifolds!

- Impossible to do a complete survey of geometries
- Much more realistic: all topologies

Theorem (a real one)

All possible topologies for 2D spaces are realized by spaces of the form S^2/G .

Flux compactifications change the spectrum

Flux compactifications change the spectrum

Very nice trick

Actual realizations have issues

Dohi et al. [1406.1954] [1004.3722]

Maru et al. [0904.1909]

Fermions can be localized in topological defects

Dynamical mechanism

Good fermion masses

No dark matter

Frere et al. [1505.08017] [1305.4320]

Fermions can be localized in singular points

Cacciapaglia et al. [1601.00081]

Flux compactifications change the spectrum

Very nice trick

Actual realizations have issues

Dohi et al. [1406.1954] [1004.3722]

Maru et al. [0904.1909]

Fermions can be localized in topological defects

Dynamical mechanism

Good fermion masses

No dark matter

Frere et al. [1505.08017] [1305.4320]

Fermions can be localized in singular points

Cacciapaglia et al. [1601.00081]

Model specifications

Model specifications

Symmetry Fixed points

Model specifications

Symmetry
Fixed points
Only one fixed point

 S_n

Model specifications

Symmetry
Fixed points
Only one fixed point
Minimal

 S_4

Model specifications

Symmetry
Fixed points
Only one fixed point
Minimal

Model specifications

Symmetry
Fixed points
Only one fixed point
Minimal

Dilepton resonances

Relic abundance

Dilepton resonances

ATLAS analysis [1405.4123]

Recast using MA5

Relic abundance

Dilepton resonances

ATLAS analysis [1405.4123] Recast using MA5

Relic abundance

Driven by coannihilations

Dilepton resonances

ATLAS analysis [1405.4123] Recast using MA5

Lower bound

Relic abundance

Driven by coannihilations

Upper bound

Dilepton resonances

ATLAS analysis [1405.4123] Recast using MA5

Relic abundance

Driven by coannihilations

Lower bound

Upper bound

1/R

ullet General features of S^2/G

- General features of S^2/G
- $m_{DM} \geq m_{Z'}$

- ullet General features of S^2/G
- $m_{DM} \geq m_{Z'}$
- Vector DM increases x-sec but not enough

Group	Dark Matter		Z's		wavefunction factors			
	(l, m)	spin	(l, m)	$m_{DM}/m_{Z'}$	NP	SP	EME	WME
S_4	$(2, \pm 2)$	S	(2, 0)	1	$\sqrt{5}$		-	-
S_6	$(3, \pm 3)$	٧	(2, 0)	$\sqrt{2}$	$\sqrt{5}$		-	-
C_2	$(2, \pm 2)$	V+S	(1,0)	$\sqrt{3}$	$-\sqrt{3}$	$\sqrt{3}$	-	-
C_4	$(4, \pm 4)$	V+S	(1,0)	$\sqrt{10}$	$-\sqrt{3}$	$\sqrt{3}$	-	\-
C_{2h}	$(2, \pm 2)$	٧	(2,0)	1	√.	5	-	->
C_{4h}	$(4, \pm 4)$	٧	(2, 0)	$\sqrt{10/3}$	√.	5	- 1	1.
D_3	(4, 3)	V+S	(2,0)	$\sqrt{10/3}$	√.	5 /	$-\sqrt{5}/2$	$-\sqrt{5}/2$
D_5	(6, 5)	V+S	(2, 0)	$\sqrt{7}$	V.	5	$-\sqrt{5}/2$	$-\sqrt{5}/2$

- General features of S^2/G
- $m_{DM} \geq m_{Z'}$
- Vector DM increases x-sec but not enough
- Most viable always low n (deficit angle)

Group	Dark Matter		Z's		wavefunction factors			
	(l, m)	spin	(l, m)	$m_{DM}/m_{Z'}$	NP SP		EME	WME
S_4	$(2, \pm 2)$	S	(2,0)	1	$\sqrt{5}$		-	-
S_6	$(3, \pm 3)$	٧	(2, 0)	$\sqrt{2}$	$\sqrt{5}$		-	-
C_2	$(2, \pm 2)$	V+S	(1,0)	$\sqrt{3}$	$-\sqrt{3}$	$\sqrt{3}$	-	-
C_4	$(4, \pm 4)$	V+S	(1,0)	$\sqrt{10}$	$-\sqrt{3}$	$\sqrt{3}$	-	\-
C_{2h}	$(2, \pm 2)$	٧	(2,0)	1		5	-	-\
C_{4h}	$(4, \pm 4)$	٧	(2,0)	$\sqrt{10/3}$	√.	5	- 1	1-1
D_3	(4, 3)	V+S	(2,0)	$\sqrt{10/3}$	√.	5	$-\sqrt{5}/2$	$-\sqrt{5}/2$
D_5	(6, 5)	V+S	(2, 0)	$\sqrt{7}$	√.	5	$-\sqrt{5}/2$	$-\sqrt{5}/2$

- General features of S^2/G
- $m_{DM} \geq m_{Z'}$
- Vector DM increases x-sec but not enough
- Most viable always low n (deficit angle)

Group	Dark Matter		Z's		wavefunction factors				
	(l, m)	spin	(l, m)	$m_{DM}/m_{Z'}$	NP SP		EME	WME	
S_4	$(2, \pm 2)$	S	(2,0)	1	$\sqrt{5}$		-	-	
S_6	$(3, \pm 3)$	٧	(2,0)	$\sqrt{2}$	$\sqrt{5}$		-	-	
C_2	$(2, \pm 2)$	V+S	(1,0)	$\sqrt{3}$	$-\sqrt{3}$	$\sqrt{3}$	-	-	
C_4	$(4, \pm 4)$	V+S	(1,0)	$\sqrt{10}$	$-\sqrt{3}$	$\sqrt{3}$	-	\-	
C_{2h}	$(2, \pm 2)$	٧	(2,0)	1		5	-	-\	
C_{4h}	$(4, \pm 4)$	٧	(2,0)	$\sqrt{10/3}$	√.	5	- 1	1-4	
D_3	(4,3)	V+S	(2,0)	$\sqrt{10/3}$	√.	5	$-\sqrt{5}/2$	$-\sqrt{5}/2$	
D_5	(6, 5)	V+S	(2,0)	$\sqrt{7}$	V.	5	$-\sqrt{5}/2$	$-\sqrt{5}/2$	

All models in our framework are disfavored

Will Mr. Higgs save the day?

"Tree-level UED" has one parameter: $\frac{1}{R}$

Need localized operators (free parameters) for a fully consistent quantum theory

Many hidden knobs: H(4,0) fine-tuned annihilation resonance

Required increase in $\langle \sigma v \rangle$: $\times 80$

Detailed analysis not yet done but seems possible.

 Kaluza-Klein dark matter: nice idea, actually excludable in a finite time

- Kaluza-Klein dark matter: nice idea, actually excludable in a finite time
- Constraints are strong (TH & EXP)

- Kaluza-Klein dark matter: nice idea, actually excludable in a finite time
- Constraints are strong (TH & EXP)
- The "natural" S^2/G paradigm with localized fermions is completely excluded

- Kaluza-Klein dark matter: nice idea, actually excludable in a finite time
- Constraints are strong (TH & EXP)
- The "natural" S^2/G paradigm with localized fermions is completely excluded
- Still a remaining "Higgs funnel" which is likely viable: possible TeV WIMP

- Kaluza-Klein dark matter: nice idea, actually excludable in a finite time
- Constraints are strong (TH & EXP)
- The "natural" S^2/G paradigm with localized fermions is completely excluded
- Still a remaining "Higgs funnel" which is likely viable: possible TeV WIMP
- Eventually falsifiable too