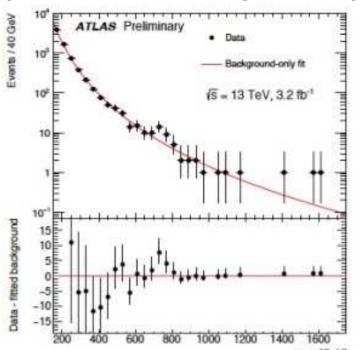
A new resonance at 750 GeV?

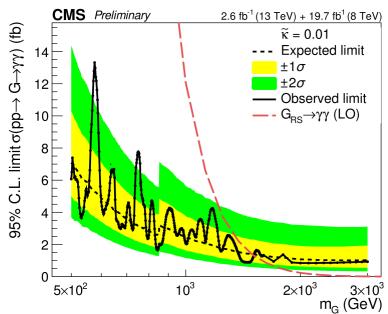
Abdelhak DJOUADI

(LPT CNRS & U. Paris-Sud)

- 1. A new resonance at 750 GeV? Who ordered that?
 - 2. Main features and first interpretations
 - 3. Example of scenario: hMSSM+VLFs
 - 4. Implications: looking at the bright side of life
 - 5. Summary


Mostly based on:

- A. Angelescu, G. Moreau, AD: 2HDMs/MSSM+VLFs, arXiv:1512.04921
 - G. Arcadi, Y. Mambrini, AD: Dark Matter issues, arXiv:1512.04913
- J. Ellis, R. Godbole, J. Quevillon, AD: Collider Signatures, arXiv:1601.03696


1. A new resonance at 750 GeV?

CERN Jamboree: LHC results at $\sqrt{s}=$ 13 TeV and L= 3.2 fb $^{-1}$ or 2.6 fb $^{-1}$ ATLAS di-photon results:

 3.9σ local excess at 750 GeV (but only 2.3σ after LEE?). Total width of about 45 GeV (but smaller width possible).

2.6 σ local excess at 760 GeV (but only 1.2 σ after LEE?). Signal larger with 8TeV data. Total width apparently small. (and analysis targets spin-2).

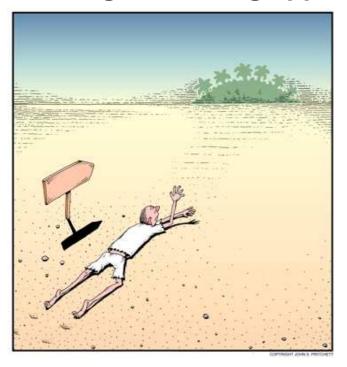
The CERN auditorium was not empty on December 15...
It had a smell of December 2011, the other Higgstorical day....

1. A new resonance at 750 GeV?

And?

Experimentalists:

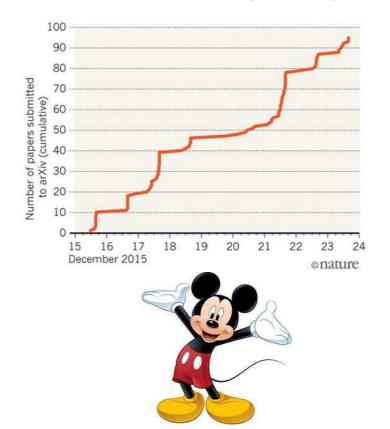
Too early to say anything!
It is only three poor sigmas!


and if you insist a little bit:

So do your job and collect data (and leave the theorists enjoy!)

Poor theorists:

Waiting for 30 years for NP, starting to get desperate... something interesting appears.


Do your job and interpret data! (healthy exercise anyway...)

1. A new resonance at 750 GeV?

Tsunami of theory papers trying to interpret the 750 GeV diphotons:

10 papers the very first day, 100 at the end of the year, about 180 papers as of today...

Nature article/Dorigo blog:

Florilège of explanations:

- cascading heavy quarks,
- collimated 2x2 photons,
- new gauge bosons Z'+X
- sgoldstinos and other SUSY,
- quirks, hidden valleys?
- statistical fluctuation...

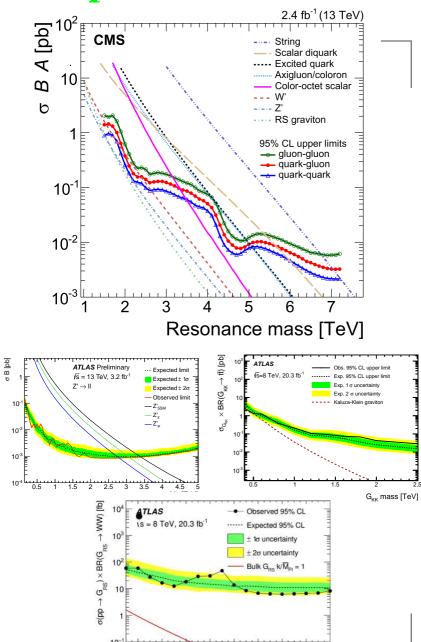
But most papers are thinking about a new heavy resonance:

- Dark matter mediators
- Technipions/Goldstones, ...
- Axions,Radions/Dilatons,...
- Gravitons or any spin 2...
- Higgs bosons...

and other possibilities...

I try some quick/basic interpretations...

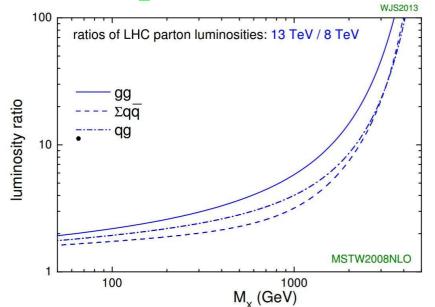
If resonance: obviously integer spin: the observation is made in $X \to \gamma \gamma$: the Landau-Yang theorem



(orbital momentum conservation): rules our case of spin-one particle. (ways to evade that but curious...).

Either spin-zero or spin-two.

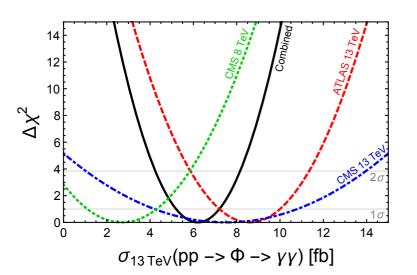
Spin–2 has democratic couplings: (as in the case of KK gravitons eg): should also appear in $\ell\ell$, jj, VV,Vh no sign of that in other searches.


Spin-zero is more likely.

Does it come from gg or $q\bar{q}$? Well, to cope with 8 TeV data, it should better come from gg:

$$\mathcal{R}_{f i}=rac{(\sigma_{f S}^{f i}/\sqrt{\sigma_{f B}})_{ exttt{13 TeV}}}{(\sigma_{f S}^{f i}/\sqrt{\sigma_{f B}})_{ exttt{8 TeV}}} \ \mathcal{R}_{f i=gg}\simeq 3\,{
m v.s.} \mathcal{R}_{f i=qar{q}}\simeq 1.7$$

gg: still tension with 8 TeV data...



Prefers gg via heavy particles to light quarks: likely to be Higgs-like! It is a scalar or pseudoscalar Higgs boson: we baptize it $\Phi=$ H or A.

 Φ production cross section? Fit all data and make a χ^2 : ATLAS at 13 TeV run only, CMS at both 8 and 13 TeV runs,

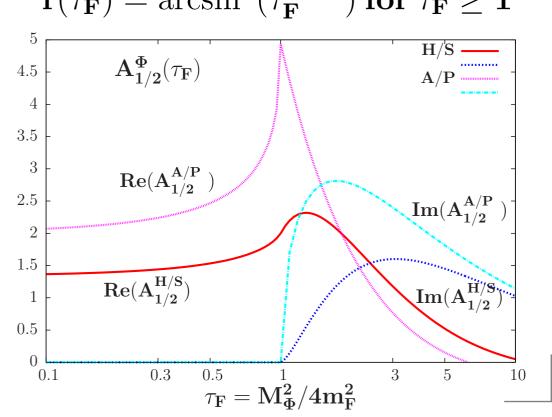
$$\Rightarrow \sigma(\mathbf{\Phi}) = \mathbf{6} \pm \mathbf{2}$$
 fb

pretty large cross section!

The $\Phi {f g} {f g}$ and $\Phi \gamma \gamma$ couplings should be induced by heavy fermion loops:

$$\Gamma(\Phi \to gg, \gamma\gamma) \propto g_{s,w}^{2} \left| \sum_{\mathbf{F}} \lambda_{\Phi \mathbf{F} \mathbf{F}} / m_{\mathbf{F}} \times \mathbf{A}_{1/2}^{\Phi}(\tau_{\mathbf{F}}) \right|^{2}$$

$$\mathbf{A}_{1/2}^{\mathbf{S}} = 2 \left[\tau_{\mathbf{F}} + (\tau_{\mathbf{F}} - 1) \mathbf{f}(\tau_{\mathbf{F}}) \right] \tau_{\mathbf{F}}^{-2} \qquad \tau_{\mathbf{F}} = \mathbf{M}_{\Phi}^{2} / 4 m_{\mathbf{F}}^{2}$$


$$\mathbf{A}_{1/2}^{\mathbf{P}} = 2 \tau_{\mathbf{F}}^{-1} \mathbf{f}(\tau_{\mathbf{F}}) \qquad \mathbf{f}(\tau_{\mathbf{F}}) = \arcsin^{2}(\tau_{\mathbf{F}}^{-1/2}) \text{ for } \tau_{\mathbf{F}} \geq 1$$

$$\mathbf{A_{1/2}^{P}} = \mathbf{2}\tau_{\mathbf{F}}^{-1}\mathbf{f}(\tau_{\mathbf{F}})$$

$$m m_F\gg M_{\Phi}\Rightarrow {A_{1/2}^P
ightarrow +2} \ {A_{1/2}^S
ightarrow +{4\over 3}}$$

For big loop contributions, we need (simultaneously?):

- big Yukawas,
- big charge/color,
- ullet m_F $pprox rac{1}{2} \mathrm{M}_{\Phi}$,
- many fermions...

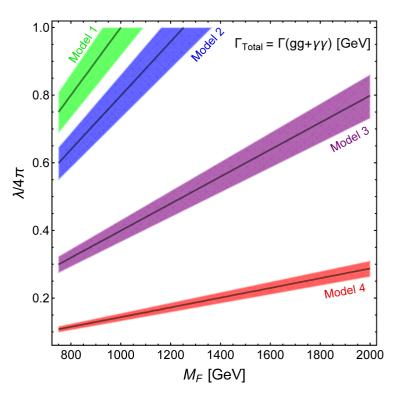
Narrow width (as in CMS?): Φ couples only via loops, also to WW, ZZ, $Z\gamma$ In addition, one has $m_F\!\gtrsim\!{1\over2}M_\Phi$ so that there are no decays $\Phi\!\to\!far f, Far F$ Effective Lagrangian approach with the field strengths and their duals:

$$\begin{split} \mathcal{L}_{eff}^{S/P} &= \frac{e^2}{4v} c_{\Phi\gamma\gamma} \Phi F_{\mu\nu} F^{\mu\nu} / \tilde{F}^{\mu\nu} + \frac{g_s^2}{4v} c_{\Phi gg} \Phi G_{\mu\nu} G^{\mu\nu} / \tilde{G}^{\mu\nu} \\ BR(\Phi \to \gamma\gamma) &= \frac{\Gamma(\Phi \to \gamma\gamma)}{\Gamma(\Phi \to \gamma\gamma) + \Gamma(\Phi \to gg)} \approx \frac{\Gamma(\Phi \to \gamma\gamma)}{\Gamma(\Phi \to gg)} \approx \frac{c_{\Phi\gamma\gamma}^2}{c_{\Phi gg}^2} \frac{\alpha}{8\alpha_s} \approx 10^{-2} \end{split}$$

Only vector-like fermion loops,

discuss several possibilities:

model 1: an
$$e_{\mathbf{Q}}=rac{2}{3}\,T_{\mathbf{R},\mathbf{L}}$$
 singlet.

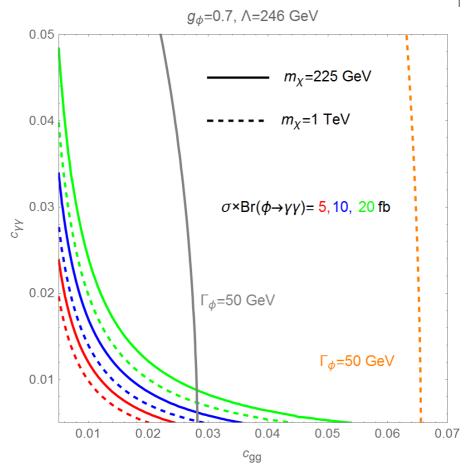

model 2:
$$\mathbf{e_Q} = \frac{2}{3}, -\frac{1}{3} \ (\mathbf{U}, \mathbf{D})_{\mathbf{R}, \mathbf{L}}$$
 .

model 3:
$$(\mathbf{U},\mathbf{D})_{\mathbf{R},\mathbf{L}},\mathbf{T}_{\mathbf{R},\mathbf{L}},\mathbf{B}_{\mathbf{R},\mathbf{L}}$$
 .

model 4:
$$(\mathbf{U}, \mathbf{D})_{\mathbf{R}, \mathbf{L}}, \mathbf{T}_{\mathbf{R}, \mathbf{L}}, \mathbf{B}_{\mathbf{R}, \mathbf{L}}$$
,

$$(\mathbf{L^1},\mathbf{L^2})_{\mathbf{R},\mathbf{L}},\mathbf{E_{\mathbf{R},\mathbf{L}}}$$

LHC Φ xsection reproduced for perturbative $\lambda^2/4\pi < 1/2$ and not too large VLF masses...



Large width scenario (as in ATLAS): Φ couples directly to heavy particles:

the couplings to W and bosons:
are all eaten by the SM-like h state,
only fermion couplings allowed:
either tops, bottoms, or new ones...

Again in the effective approach:

$$\mathcal{L}_1 = \mathcal{L}_S + c_f m_F/v imes \Phi \overline{f} f$$
 $\mathcal{L}_1 = \mathcal{L}_P + i c_f m_F/v \Phi \overline{f} \gamma_5 f$ with the SM vev $v \approx$ 246 GeV; can fit $\sigma imes BR$ and $\Gamma_\Phi \approx 50$ GeV for reasonable $c_{\Phi gg}, c_{\Phi \gamma \gamma}$ and m_F .

The best way to describe the large width possibility is the 2HDM/MSSM An example would be the hMSSM: AD, Maiani, Polosa, Quevillon, Riquer arXiv:1307.5205 [hep-ph] and arXiv:1502.05653 [hep-ph].

Two Higgs doublets:
$$m H_1=inom{H_1^0}{H_1^-}$$
 and $m H_2=inom{H_2^+}{H_2^0}$, just like in `MSSM`

After EWSB: 3 dof for ${f W}_{f L}^{\pm}, {f Z}_{f L} \Rightarrow$ 5 physical states left out: ${f h}, {f H}, {f A}, {f H}^{\pm}$

General 2HDM: 6+1 free parameters: $tan\beta, \alpha, M_h, M_H, M_A, M_{H^\pm}, m_{12}$

MSSM: only two parameters at tree-level: $an\!eta, \mathbf{M_A}$ but rad. cor. important

$$\mathbf{M_h} \lesssim \! \mathbf{M_Z} |\mathbf{cos2}\beta| \! + \! \mathbf{RC} \! \lesssim \! \mathbf{130~GeV} \; , \; \mathbf{M_H} \! \approx \! \mathbf{M_A} \! \approx \! \mathbf{M_{H^{\pm}}} \! \lesssim \! \mathbf{M_{EWSB}}$$

- Couplings of h, H to VV are suppressed; no AVV couplings (CP).
- For $an\!eta\gg 1$: couplings to b (t) quarks enhanced (suppressed).

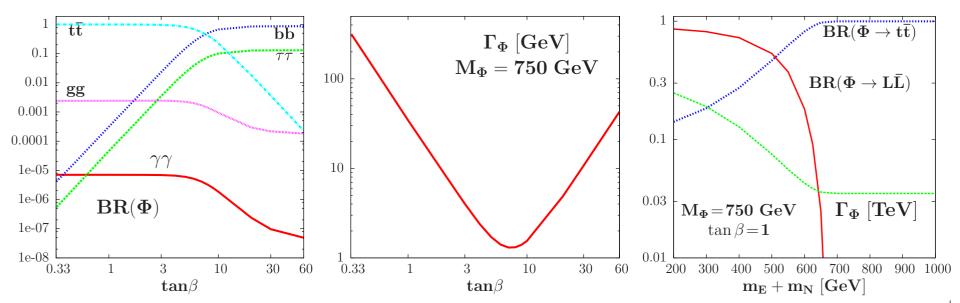
$$\Phi \qquad g_{\Phi \bar{u}u} \qquad g_{\Phi \bar{d}d} \qquad g_{\Phi VV}
h \qquad \frac{\cos \alpha}{\sin \beta} \to 1 \qquad \frac{\sin \alpha}{\cos \beta} \to 1 \qquad \sin(\beta - \alpha) \to 1
H \qquad \frac{\sin \alpha}{\sin \beta} \to 1/\tan \beta \qquad \frac{\cos \alpha}{\cos \beta} \to \tan \beta \qquad \cos(\beta - \alpha) \to 0
A \qquad 1/\tan \beta \qquad \tan \beta \qquad 0$$

Alignement limit of 2HDM: $\alpha=\beta-\frac{1}{2}\pi$ so that h couplings are SM-like.

Same as decoupling limit of MSSM + $M_A\!pprox\!M_H\!pprox\!M_{H^\pm}\!\gg\!M_Z$ and h light

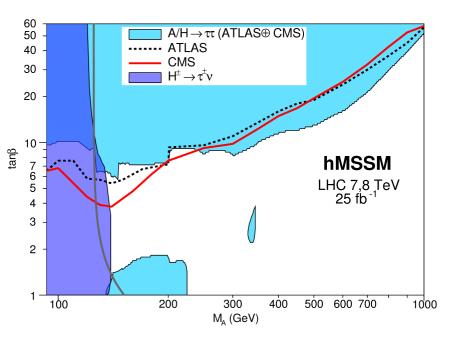
1 SM-like light h and 2 CP-odd like heavy Higgses with cplg to t,b,au only

$$\Rightarrow h \equiv H_{SM} \ , \ \Phi = H, A$$

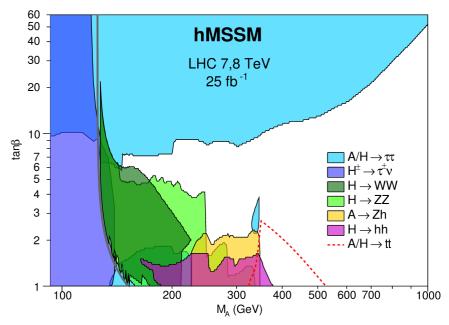

Large width scenario (as in ATLAS): obtained from Φ –fermion couplings

- couplings to massive gauge bosons all eaten by the SM-like 125 GeV h,
- only couplings to fermions allowed: either tops, bottoms, or new ones...

$$\mathbf{g_{\Phi tt}} = \frac{\mathbf{m_t}}{\mathbf{v}} \cot \beta, \ \mathbf{g_{\Phi bb}} = \frac{\mathbf{m_b}}{\mathbf{v}} \tan \beta, \ \mathbf{g_{\Phi \tau \tau}} = \frac{\mathbf{m_\tau}}{\mathbf{v}} \tan \beta$$


with $taneta=v_2/v_1$ small tanetapprox 1 or large $tanetapprox m_t/m_bpprox 60$

- $- an\!etapprox 1: {
 m BR}(\Phi o {
 m tar t})pprox 1, {
 m BR}(\gamma\gamma)pprox 10^{-5},\ \Gamma_{\Phi}pprox 30$ GeV.
- $- an\!etapprox 60: {
 m BR}(\Phi o {
 m b}ar{
 m b})pprox .9, {
 m BR}(\gamma\gamma)pprox 10^{-7},\ \Gamma_{\Phi}pprox 30$ GeV.

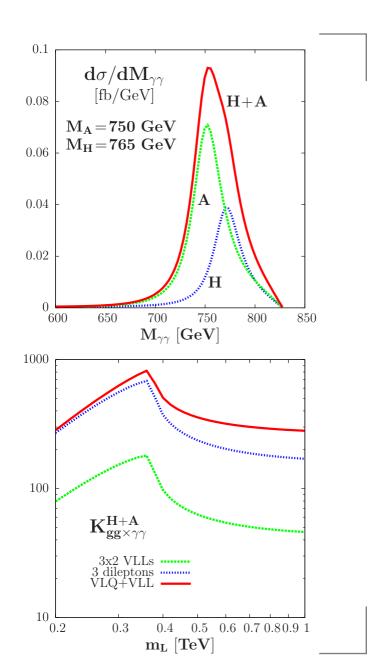

– $an\!eta$ pprox3–10: allow for light lepton (DM?) decays to get $\Gamma_\Phipprox 30$ GeV.

Large values $an\!\beta \gtrsim 30$: $\sigma(gg, b\bar{b} \! \to \! \Phi \! \to \! \tau \tau)$ too large ATLAS+CMS very sensitive \Rightarrow region totally excluded.

NB: valid only if no SUSY decays so that BR(H/A $\to \tau \tau$) maximal OK in the hMSSM with large $M_{\rm S}$.

Low values $an\!\beta\lesssim 1$: $\sigma(gg\to\Phi\to t\bar t)$ too large ATLAS+CMS searches sensitive \Rightarrow region being excluded.

NB: analysis valid for spin–1 (no interference with $gg \rightarrow tt$ bkg) full Φ analysis in progress


Unfortunately hMSSM or 2HDM without any new particle does not make it!

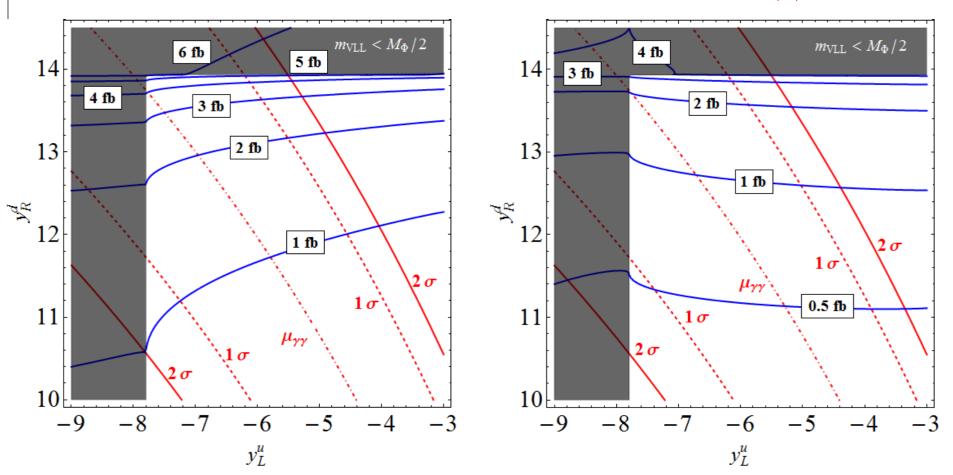
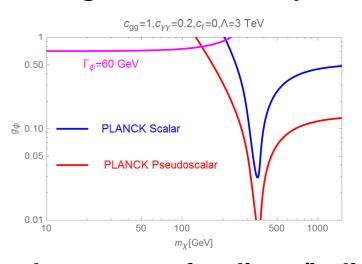
Rates for
$$gg \to \Phi \to \gamma \gamma$$
: $\sigma(H) = 0.85$ fb at 8 TeV $BR(H \to \gamma \gamma) \approx 6 \times 10^{-6}$ $\sigma(A) = 1.70$ fb at 8 TeV $BR(A \to \gamma \gamma) \approx 7 \times 10^{-6}$ $\sigma \times BR(H + A) \approx 10^{-2}$ fb

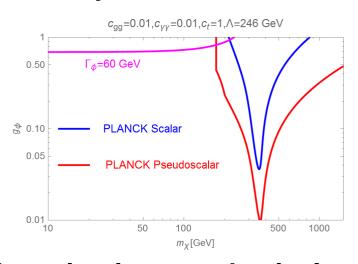
We are short by a factor 500...

Include a bunch of VLFs:

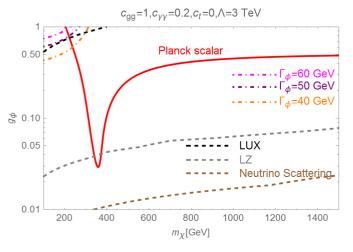
- 3 families of 2 VLL doublets
- 3 doubly charged leptons
- one family of VLQ and VLL (we set tan β =3 to reduce Γ_{Φ}) with usual Yukawa couplings optimal effect at $m_F=rac{1}{2}M_{\Phi}$ (But watch out for light Higgs).

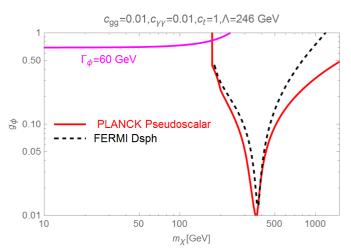
VLFs will also contribute to SM–like Higgs gg and $\gamma\gamma$ loops!

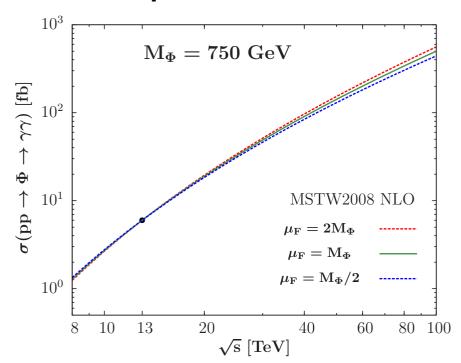

Figure 1: Contours of constant $\sum \sigma(gg \to \Phi) \times \text{BR}(\Phi \to \gamma\gamma)$ and $\mu_{\gamma\gamma}$ in the $\{y_L^u, y_R^d\}$ plane, for MSSM (left) and type II 2HDM (right) including the $\mu_{\gamma\gamma} = 1.16 \pm 0.18 \pm 0.15$ constraint.

A. Angelescu, G. Moreau, AD: 2HDMs/MSSM+VLFs, arXiv:1512.04921


4. Implications: Dark Matter

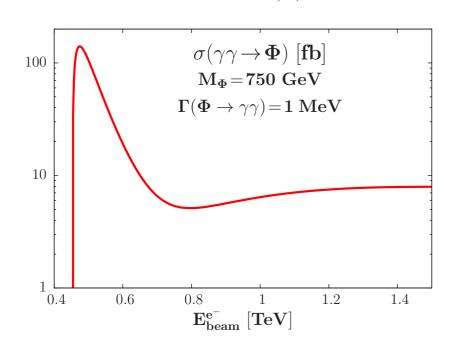

 $_{-}\Phi$ resonance is ideal mediator for Dark Matter: case of fermion X $_{-}$ cosmological relic density $\Omega {
m h^2}$ obtained by annihilation XX $ightarrow \Phi$ ightarrowSM.

Good prospects for direct/indirect detection in astrophysical experiments.



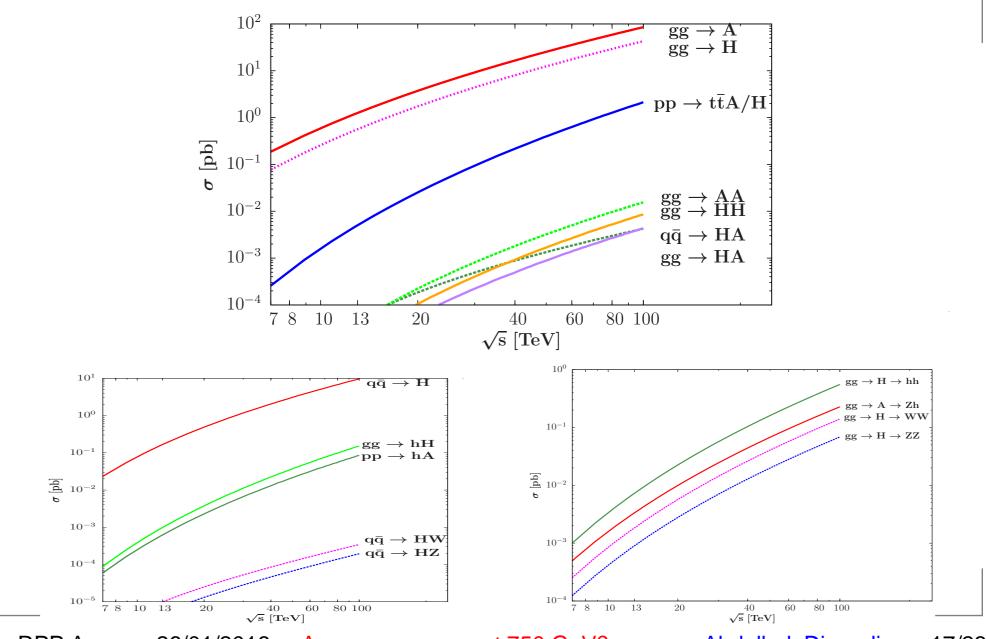
G. Arcadi, Y. Mambrini, AD: Dark Matter issues, arXiv:1512.04913

4. Implications: singlet resonance at colliders


J. Ellis, R. Godbole, J. Quevillon, AD: Collider Signatures, arXiv:1601.03696

Reproduce Φ resonance in pp: same prod. process $gg \to \Phi \gamma \gamma$ grows with the gluon luminosity and extrapolation to HE trivial.

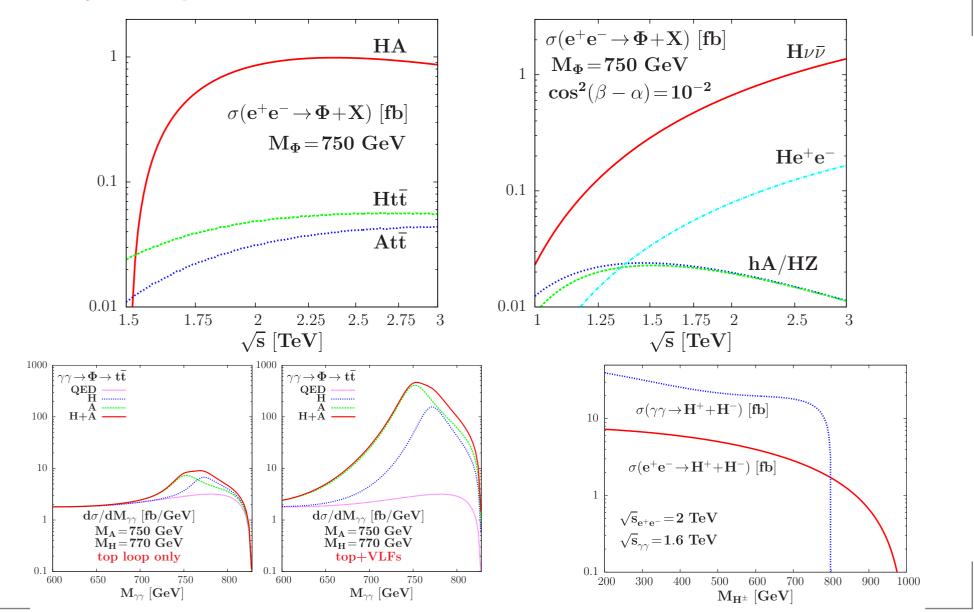
Ideal for HE-LHC, FCC-hh, SPPC 2 orders magnitude more at 100TeV check other WW,ZZ,Z γ final states.


Future e+e- HE linear colliders can be turned into $\gamma\gamma$ colliders 80% energy and same luminosity $\Rightarrow \Phi$ production in $\gamma\gamma \to \Phi$

Ideal machine for a diphoton state: Measure precisely $\Phi\gamma\gamma$ coupling Check CP properties of resonance.

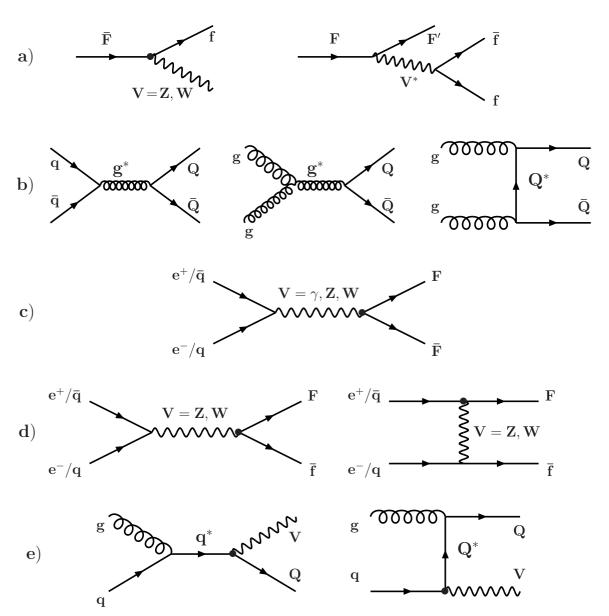
4. Implications: doublet resonance at colliders

Many more processes if Φ is in a 2HDM/hMSSM like scenario; in pp:

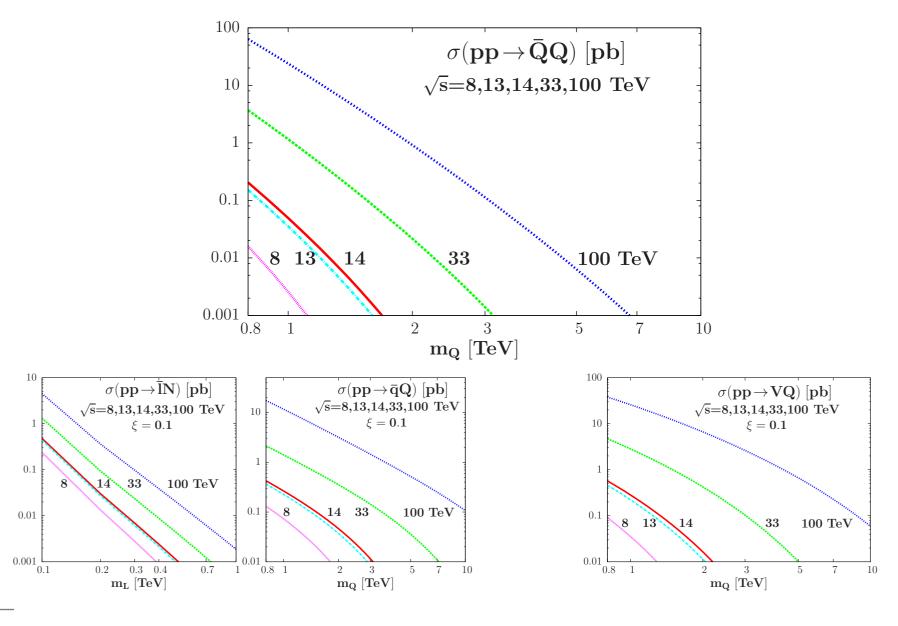


RPP Annecy, 26/01/2016 A new resonance at 750 GeV?

Abdelhak Djouadi – p.17/23


4. Implications: doublet resonance at colliders

Many more processes if Φ is in a 2HDM/hMSSM like scenario; in e+e-:-

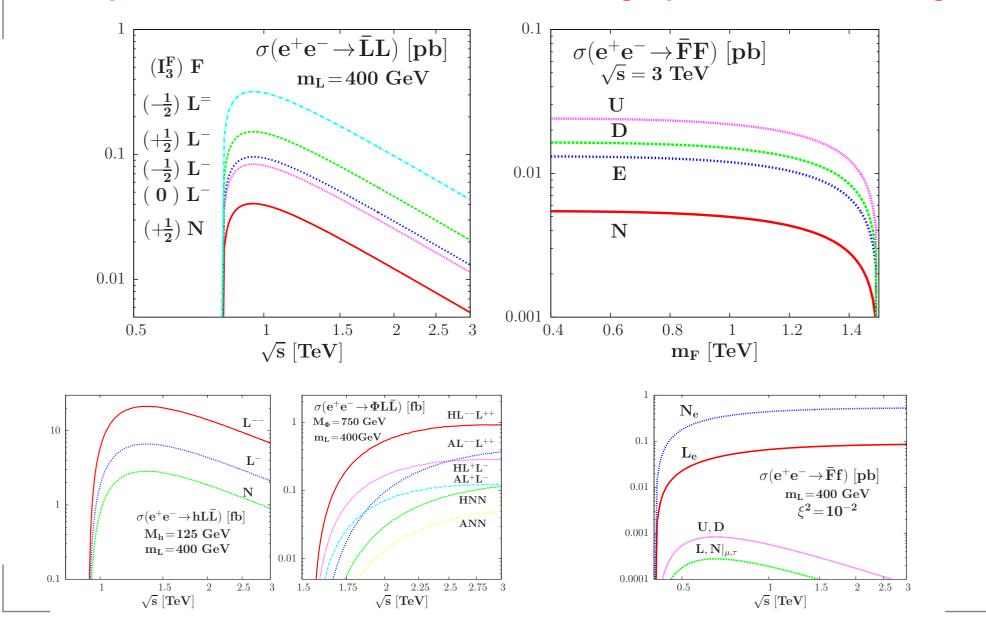

4. Implications: vector-like fermions

The vector-like fermions can be produced in pair or singly at colliders:

4. Implications: doublet resonance at colliders

First pair production of VLQs in pp and then single production via mixing:

4. Implications: vector—like fermions


First pair production of VLQs in pp and then single production via mixing:

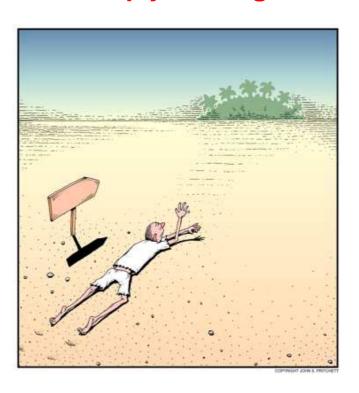
	Vector-like quark mass sensitivity				Vector-like lepton mass sensitivity			
model	$100 {\rm fb^{-1}}$	$300 {\rm fb^{-1}}$	$300 {\rm fb}^{-1}$	$20ab^{-1}$	$100 {\rm fb}^{-1}$	$300 {\rm fb}^{-1}$	$300 {\rm fb}^{-1}$	$1 \ 20 ab^{-1}$
	13 TeV	14 TeV	33 TeV	100 TeV	13 TeV	14 TeV	33 TeV	100 TeV
1	1.4	1.7	3.1	11.7			_	
2	1.5	1.8	3.4	12.7			_	
3	1.6	2.0	3.7	13.7			_	
4	1.6	2.0	3.7	13.7	0.56	0.73	1.7	5.3

Table 1: Prospective model sensitivities to massive vector-like quarks (left) and leptons (right) [with the particle masses in TeV] in the indicated pp collider and scenario from extrapolations of the present LHC searches.

4. Implications: doublet resonance at colliders

Pair production of VLLs in e+e- and then single production via mixing:

RPP Annecy, 26/01/2016


A new resonance at 750 GeV?

Abdelhak Djouadi – p.22/23

5. Summary

And? Too early to conclude. But life suddenly became bright...

It is really a new resonance?
Or is it simply a mirage?

If true then the future is bright! (bye-bye the multiverse ... and plenty of new physics!)

But again we should hear the experimentalists and their usual:

and wait for the coming data. In summer we will know more (but until then we can enjoy!)