# Recent progress in formal theory 

Benjamin Basso<br>ENS Paris

RPP 2016<br>Annecy

## Recent progress in formal theory

## in planar N=4 SYM theory

Benjamin Basso<br>ENS Paris

RPP 2016<br>Annecy

## N=4 super Yang Mills theory

Maximally supersymmetric version of YM theory in 4d

$$
\mathcal{L}=\frac{1}{4 g^{2}} \operatorname{tr} F_{\mu \nu} F_{\mu \nu}+\frac{1}{2} \operatorname{tr} D_{\mu} \Phi_{A B} D_{\mu} \Phi_{A B}+\operatorname{tr} \bar{\Psi}_{A} \gamma_{\mu} D_{\mu} \Psi_{A}
$$

+ Yukawa and quartic interactions

For short, the theory of a massless spin 1 (extended) supermultiplet (everything else follows from it)

One thing to keep in mind : it is conformally invariant Corollaries:

- no running of the coupling
- no confinement
- spectrum is made out of massless gluons + super-partners


# Why studying it? (or 3 good reasons to like it) 

Theoretical laboratory : one can explore and identify mathematical and physical structures (at higher loops or strong coupling) more easily than in any other theory

AdS/CFT correspondence :it is one of these few theories for which we believe we know precisely what is the string theory dual (here it is IIB string theory in AdS5 * S5)

Integrability : it is believed to be "exactly solvable", in the 't Hooft planar limit at least, and referred to as the Ising model of 4d gauge theories

## So let's try to solve it!

## Progress report in integrability

Spectrum of scaling dimensions and spin chain

Gluon scattering amplitudes and Wilson loops

Structure constants and string splitting/joining

## Scaling dimensions and spin chain



## Spectral problem



Spectrum of scaling dimensions of local operators

$$
\begin{aligned}
& \text { Local (single trace) operator } \quad\left\langle\mathcal{O}(x)^{\dagger} \mathcal{O}(0)\right\rangle=\frac{1}{x^{2 \Delta}} \\
& \mathcal{O}=\operatorname{tr} \Phi_{1} \Phi_{2} \ldots \Phi_{L}
\end{aligned}
$$

Mixing problem
Radiative corrections induce mixing of operators


Equivalent to
a spin chain problem


$$
\Delta=\Delta_{0}+2 g^{2} H_{X X X}
$$

## Spectral problem

One-loop dilatation operator
[Minahan,Zarembo'02] [Beisert,Staudacher'03]

$$
H_{X X X}=\sum_{i=1}^{L}\left(I-P_{i i+1}\right)
$$



Werner Heisenberg


Hans Bethe

Heisenberg spin chain is integrable :

- As many commuting conserved charges as degrees of freedom (i.e., L for SU (ఙ) spin chain)
- Fundamental excitations (magnons) about the ferro vacuum have a factorized S-matrix

$$
\mathbb{S}_{123}=\mathbb{S}_{23} \mathbb{S}_{13} \mathbb{S}_{12}
$$

## Spectral problem

Bethe wave function


Periodicity conditions gives the Bethe ansatz equations (i.e. quantization conditions for the magnon momenta)

$$
e^{i p_{i} L} \prod_{j \neq i} S\left(p_{i}, p_{j}\right)=1
$$

And the spectrum of energies follows :

$$
E=\sum_{i} E\left(p_{i}\right)
$$

## Higher loops?



Increasing loop order = increasing range of the spin chain Hamitonian
Not much is known about the resulting long range spin chain
It is however believed to remain integrable
Hint :

string in AdS classically integrable
[Bena,Pochinski,Roiban'03]
strong coupling

We can still solve our problem by adding loop corrections to our previous ingredients : energy and S-

## matrix

## Power of symmetry

Way to go? Let the symmetry do the job Residual symmetry group of BMN (ferro) vacuum :
 irrep

Right

Central extensions: contain energy (and coupling constant)

Each magnon transforms in bi-fundamental

$$
\underset{\text { Left }}{2 \mid 2} \otimes \underset{\text { Right }}{2}
$$

Dispersion relation

$$
E=\sqrt{1+16 g^{2} \sin ^{2}\left(\frac{p}{2}\right)}
$$

(Dimension $=16=8$ bosons +8 fermions)

## Power of symmetry

Way to go? Let the symmetry do the job Residual symmetry group of BMN (ferro) vacuum :

$$
\overrightarrow{p_{1}} \quad \overrightarrow{p_{2}}
$$

$\checkmark$ Fulfills Yang-Baxter equation
Symmetry fixes S-matrix (up to overall scalar factor)

$$
\mathbb{S}_{12} \sim S_{12}^{0} \mathcal{S}_{12} \times \dot{\mathcal{S}}_{12}
$$


$\checkmark$ Scalar factor constrained by crossing symmetry

## Full solution?

Is it that simple?


Beisert-Staudacher Asymptotic Bethe Ansatz

## Symmetries

Beisert S-matrix

2002

QCD Story
Perturbative
Integrability

No, one must also account for finite size corrections
(because spin chain has finite length)

## Full solution



## Applications

Scaling dimension of twist two operator for complex spin
[Gromov,Levkovich-Maslyuk,Sizov'15]


Plot of real part of the spin S as a function of the scaling dimension $\Delta$ for 't Hooft coupling $=6.3$

## Applications

Scaling dimension of shortest unprotected operator (so-called Konishi multiplet)

$$
\begin{aligned}
& \Delta= 4+12 g^{2}-48 g^{4}+336 g^{6}+g^{8}\left(-2496+576 \zeta_{3}-1440 \zeta_{5}\right) \\
&+ g^{10}\left(15168+6912 \zeta_{3}-5184 \zeta_{3}^{2}-8640 \zeta_{5}+30240 \zeta_{7}\right) \\
&+ g^{12}\left(-7680-262656 \zeta_{3}-20736 \zeta_{3}^{2}+112320 \zeta_{5}+155520 \zeta_{3} \zeta_{5}+75600 \zeta_{7}-489888 \zeta_{9}\right) \\
&+ g^{14}\left(-2135040+5230080 \zeta_{3}-421632 \zeta_{3}^{2}+124416 \zeta_{3}^{3}-229248 \zeta_{5}+411264 \zeta_{3} \zeta_{5}\right. \\
&\left.\quad-993600 \zeta_{5}^{2}-1254960 \zeta_{7}-1935360 \zeta_{3} \zeta_{7}-835488 \zeta_{9}+7318080 \zeta_{11}\right) \\
&+ g^{16}\left(54408192-83496960 \zeta_{3}+7934976 \zeta_{3}^{2}+1990656 \zeta_{3}^{3}-19678464 \zeta_{5}-4354560 \zeta_{3} \zeta_{5}\right. \\
& \quad-3255552 \zeta_{3}^{2} \zeta_{5}+2384640 \zeta_{5}^{2}+21868704 \zeta_{7}-6229440 \zeta_{3} \zeta_{7}+22256640 \zeta_{5} \zeta_{7} \\
&\left.+9327744 \zeta_{9}+23224320 \zeta_{3} \zeta_{9}+\frac{65929248}{5} \zeta_{11}-106007616 \zeta_{13}-\frac{684288}{5} Z_{11}^{(2)}\right) \\
&+g^{18}\left(-1014549504+1140922368 \zeta_{3}-51259392 \zeta_{3}^{2}-20155392 \zeta_{3}^{3}+575354880 \zeta_{5}\right. \\
& \quad-14294016 \zeta_{3} \zeta_{5}-26044416 \zeta_{3}^{2} \zeta_{5}+55296000 \zeta_{5}^{2}+15759360 \zeta_{3} \zeta_{5}^{2}-223122816 \zeta_{7} \\
&+34020864 \zeta_{3} \zeta_{7}+22063104 \zeta_{3}^{2} \zeta_{7}-92539584 \zeta_{5} \zeta_{7}-113690304 \zeta_{7}^{2}-247093632 \zeta_{9} \\
&+119470464 \zeta_{3} \zeta_{9}-245099520 \zeta_{5} \zeta_{9}-\frac{186204096}{5} \zeta_{11}-278505216 \zeta_{3} \zeta_{11}-253865664 \zeta_{13} \\
&\left.+1517836320 \zeta_{15}+\frac{15676416}{5} Z_{11}^{(2)}-1306368 Z_{13}^{(2)}+1306368 Z_{13}^{(3)}\right)
\end{aligned}
$$

## Comments :

- Finite size corrections here starts at 4 loops
- Z.. stand for single valued multiple zeta values


## Gluon scattering amplitudes and <br> Wilson loops

## Scattering amplitudes $=$ Wilson loops


gluon scattering amplitude
[Alday,Maldacena'07]
[Drummond,Korchemsky,Sokatchev'07]
[Brandhuber,Heslop,Travaglini'07]
[Drummond,Henn,Korchemsky,Sokatchev’07]
light-like polygonal Wilson loop

In this theory they are the same (in planar limit)

## Combining symmetries

Super conformal + dual super conformal gives a Yangian symmetry
[Drummond, Henn, Plefka'09] (one of the hallmark of integrability)

Put severe constraints on the integrand of scattering amplitudes which can be constructed exactly

They lead to a purely geometrical reformulation of these integrands (Grassmannian, Amplituhedron)

Also put constraints on the full (integrated) scattering amplitudes

They lead to a bootstrap for constructing SA without any use of Feynman diagrams (proceeds from knowlege of space of functions + additional physical requirements)
[Arkani-Hamed, Bourjaily, Cachazo,Caron-Huot,Goncharov, Postnikov, Trnka'10’12]
[Dixon,Drummond, Henn'II]
[Dixon,Drummond, vonHippel,
Pennington'I3]
[Dixon,Drummond, Duhr,
Pennington'l3]
[Drummond,Papathanasiou, Spradlin' 14$]$

## Immediate consequences

Amplitudes are function of cross ratio only (up to divergent part) :

$$
\log W_{n}=\mathrm{BDS}_{n}+R_{n}\left(u_{1}, \ldots, u_{3 n-15}\right)
$$

Bern-Dixon-Smirnov ansatz (contains all IR/UV divergences)

$$
R_{n}=\quad \text { remainder function }=\quad \begin{gathered}
\text { function of } \\
3 n-15 \text { cross ratios }
\end{gathered}
$$

In particular

$$
R_{4}=R_{5}=0
$$

(simply because one cannot form cross ratios for 4- and 5-edge null WLs)


$$
u_{2}=\frac{x_{15}^{2} x_{24}^{2}}{x_{14}^{2} x_{25}^{2}}
$$



$$
u_{1}=\frac{x_{13}^{2} x_{46}^{2}}{x_{14}^{2} x_{36}^{2}}
$$

$$
u_{3}=\frac{x_{26}^{2} x_{35}^{2}}{x_{25}^{2} x_{36}^{2}}
$$

It means that 4- and 5-gluon amplitudes are known exactly and given by the BDS part only!

## Immediate consequences

[Alday,Gaiotto,Maldacena,Sever,Vieira'09]

Yet another consequence :

WLs are some sort of non-local Green functions and we can use the OPE for building big WLs out of smaller ones


$$
\mathcal{W}=\sum_{\text {states } \psi} C_{\mathrm{bot}}(\psi) \times e^{-E(\psi) \tau+i p(\psi) \sigma+i m(\psi) \phi} \times C_{\mathrm{top}}(\psi)
$$

## Wilson loops at finite coupling

Hamiltonian picture
[Alday,Gaiotto,Maldacena,Sever,Vieira’09] for OPE

l+ld background : flux tube sourced by two parallel null lines
bottom\&top cap excite the flux tube out of its ground state
$\longrightarrow$ Sum over all flux-tube eigenstates

$$
\mathcal{W}=\sum_{\text {states } \psi} C_{\mathrm{bot}}(\psi) \times e^{-E(\psi) \tau+i p(\psi) \sigma+i m(\psi) \phi} \times C_{\mathrm{top}}(\psi)
$$

Can we combine this OPE picture with integrability and obtain a finite coupling representation of scattering amplitudes in this theory?

## Pentagon way : main ideas

[BB,Sever,Vieira'l3]

## Remember : use small objects to build bigger ones

Here smallest objects : squares and pentagons (no cross ratios $=$ fixed by conformal symmetry)

Analogy with OPE data for local operators : Square $=2$ pt function $=$ spectral data Pentagon $=3$ pt function $=$ coupling

## Implementation



> Step I:
> Pick a polygon and divide it into squares

and think about each square as hosting the flux tube in a particular state

## Step 2:

Decompose the flux tube state over a basis of eigenstates (w.r.t symmetries of the square)

## Implementation



## Pentagon way



$$
\begin{aligned}
=\sum_{\psi_{i}} & {\left[\prod_{i} e^{-E_{i} \tau_{i}+i p_{i} \sigma_{i}+i m_{i} \phi_{i}}\right] \times } \\
& P\left(0 \mid \psi_{1}\right) P\left(\psi_{1} \mid \psi_{2}\right) P\left(\psi_{2} \mid \psi_{3}\right) P\left(\psi_{3} \mid 0\right)
\end{aligned}
$$

To compute amplitudes we need :The spectrum of flux-tube states
All the pentagon transitions $\quad P\left(\psi_{1} \mid \psi_{2}\right)$

## The flux-tube excitations

$\psi=N$ particles state

Field insertions along a light-ray: create/annihilate state on the flux tube

Not so much different from spin chain...
... in fact it is the same problem as before but expanded around a different vacuum

Discretized version of light-ray: bath of covariant derivatives

$$
\mathcal{O}=\operatorname{tr}\left(Z D D D D \ldots D D D D \stackrel{p_{1}}{F} D D D D \ldots D D D D \stackrel{p_{2}}{\vec{F}} D D D D \ldots D D D D Z\right)
$$

Flux tube states $\quad \longleftrightarrow$ Large spin operators

## The pentagon transitions

Field insertions on pentagon WL :


$$
P(u \mid v)
$$



$$
P\left(u_{1}, u_{2} \mid v\right)
$$

$P\left(u_{1}, u_{2} \mid v_{1}, v_{2}\right)$

Pentagon as form factors


Hamiltonian picture: twist operator
$P\left(u_{1}, u_{2} \mid v_{1}\right)=\left\langle v_{1}\right| \phi_{\bigcirc}\left|u_{1}, u_{2}\right\rangle$

## The pentagon transitions

We can use integrable bootstrap for finding them :

- Fundamental axiom : $\frac{P(u \mid v)}{P(v \mid u)}=\frac{\square}{u}=$
- Mirror axiom: $\quad P\left(u^{-\gamma} \mid v\right)=P(v \mid u)$


This is enough to find the transitions in terms of S-matrix :

$$
P(u \mid v)^{2}=\frac{S(u, v)}{(u-v)(u-v+i) S\left(u^{\gamma}, v\right)}
$$

## All pentagon transitions

$$
P_{A \mid B}(u \mid v)^{2}=\mathcal{F}_{A \mid B}(u \mid v) \times \frac{S_{A B}(u, v)}{S_{A B}\left(u^{\gamma}, v\right)}
$$

$\phi$ : scalar
$\psi:$ fermion
$F$ : gluon
$\mathcal{F}_{\phi \phi}(u \mid v)=\frac{1}{(u-v)(u-v+i)}$,
$\mathcal{F}_{F F}(u \mid v)=\frac{\left(x^{+} y^{+}-g^{2}\right)\left(x^{+} y^{-}-g^{2}\right)\left(x^{-} y^{+}-g^{2}\right)\left(x^{-} y^{-}-g^{2}\right)}{g^{2} x^{+} x^{-} y^{+} y^{-}(u-v)(u-v+i)}$,
$\mathcal{F}_{F \psi}(u \mid v)=-\frac{\left(x^{+} y-g^{2}\right)\left(x^{-} y-g^{2}\right)}{g \sqrt{x^{+} x^{-}} y\left(u-v+\frac{i}{2}\right)}$,
$\mathcal{F}_{F \bar{\psi}}(u \mid v)=-\frac{g \sqrt{x^{+} x^{-}} y\left(u-v+\frac{i}{2}\right)}{\left(x^{+} y-g^{2}\right)\left(x^{-} y-g^{2}\right)}$,
$\mathcal{F}_{F \bar{F}}(u \mid v)=\frac{g^{2} x^{+} x^{-} y^{+} y^{-}(u-v)(u-v+i)}{\left(x^{+} y^{+}-g^{2}\right)\left(x^{+} y^{-}-g^{2}\right)\left(x^{-} y^{+}-g^{2}\right)\left(x^{-} y^{-}-g^{2}\right)}$,
$\mathcal{F}_{\psi \psi}(u \mid v)=-\frac{\left(x y-g^{2}\right)}{\sqrt{g x y}(u-v)(u-v+i)}$,
$\mathcal{F}_{\psi \bar{\psi}(u \mid v)}=-\frac{\sqrt{g x y}}{\left(x y-g^{2}\right)}$,
[BB,Sever,Vieira‘I3'I4]
[BB,Caetano,Cordova,Sever,Vieira' 15 ]
[Belitsky'I4'15]
$\mathcal{F}_{\phi F}(u \mid v)=1$,
$\mathcal{F}_{\phi \psi}(u \mid v)=-\frac{1}{\left(u-v+\frac{i}{2}\right)}$,

## Full 6-gluon amplitude

OPE series :

$$
=\sum_{n} \frac{1}{S_{n}} \int \frac{d u_{1} \ldots d u_{n}}{(2 \pi)^{n}} \Pi\left(\left\{u_{i}\right\}\right)
$$

Flux tube integrand :

## That's it!

(everything here is known at any coupling)

$$
\Pi\left(\left\{u_{i}\right\}\right)=\Pi_{\mathrm{dyn}} \times \Pi_{\mathrm{mat}}
$$

$$
\Pi_{\mathrm{dyn}}=\prod_{i} \mu\left(u_{i}\right) e^{-E\left(u_{i}\right) \tau+i p\left(u_{i}\right) \sigma+i m_{i} \phi} \prod_{i<j} \frac{1}{\left|P\left(u_{i} \mid u_{j}\right)\right|^{2}}
$$

## Some applications...

## Application : multi Regge kinematics

- High energy scattering
- Becomes interesting in the so-called Mandelstam regions

[Bartels,Lipatov,Sabio Vera'|5]

[Bartels,Lipatov,Prygarin'I0]
- Energy dependence in this regime is governed by so-called Regge cuts, with BFKL eigenvalue


## Regge cut = color dipole

Feynman diagram :

Similar to dipole considered by Stéphane Munier, except that here dipoles are in the adjoint of the gauge group


Regse pole (euclidean sheet)


Regge cut or dipole (minkowksian sheet)

String picture :



This is what BFKL is about

## OPE versus BFKL

OPE $\quad \mathcal{W}_{\text {hex }}=1+\sum_{m \neq 0}(-1)^{m} e^{i m \phi} \int_{-\infty}^{+\infty} \frac{d p}{2 \pi} \hat{\mu}_{m}(p) e^{i p \sigma-\tau E_{m}(p)}+\ldots$
leading term dominate at large $\tau$

BFKL $\quad \mathcal{W}_{\mathrm{hex}}^{\circlearrowleft} e^{-i \pi \delta^{\prime}}=\sum_{m=-\infty}^{\infty}(-1)^{m} e^{i m \phi} \int_{-\infty}^{+\infty} \frac{d \nu}{2 \pi} \hat{\mu}_{\mathrm{BFKL}}(\nu, m) e^{i(\sigma-\tau) \nu+(\sigma+\tau) \omega(\nu, m)}+\ldots$
leading term dominate at large $\tau+\sigma$

- Both are valid at any coupling
- They look pretty much the same but diagonalize different symmetry generators...

$$
\nu \stackrel{?}{=} \frac{1}{2}(p-i E)
$$

$$
\omega \stackrel{?}{=}-\frac{1}{2}(E-i p)
$$

... but the two expansions operate in different kinematical domains or sheets

## OPE versus BFKL

OPE $\quad \mathcal{W}_{\text {hex }}=1+\sum_{m \neq 0}(-1)^{m} e^{i m \phi} \int_{-\infty}^{+\infty} \frac{d p}{2 \pi} \hat{\mu}_{m}(p) e^{i p \sigma-\tau E_{m}(p)}+\ldots$ leading term dominate at large $\tau$

BFKL $\quad \mathcal{W}_{\mathrm{hex}}^{\circlearrowleft} e^{-i \pi \delta^{\prime}}=\sum_{m=-\infty}^{\infty}(-1)^{m} e^{i m \phi} \int_{-\infty}^{+\infty} \frac{d \nu}{2 \pi} \hat{\mu}_{\mathrm{BFKL}}(\nu, m) e^{i(\sigma-\tau) \nu+(\sigma+\tau) \omega(\nu, m)}+\ldots$
leading term dominate at large $\tau+\sigma$

Akin to DGLAP versus BFKL resummation

Leading term in one expansion


## From collinear to Regge kinematics


[BB,Caron-Huot,Sever'I4]

$$
\begin{aligned}
\omega(u, m) & =\int_{0}^{\infty} \frac{d t}{t}\left(K(t)-\frac{K(-t)+K(t)}{2} \cos (u t) e^{-|m| t / 2}\right) \\
\nu(u, m) & =2 u+\int_{0}^{\infty} \frac{d t}{t} \frac{K(-t)-K(t)}{2} \sin (u t) e^{-|m| t / 2}
\end{aligned}
$$

## Adjoint eigenvalues at finite coupling

Eigenvalues :


Intercepts :


## Other applications?

- Can we get a systematic expansion in the Regge limit (i.e., understand the infinite tower of daughter trajectories controlling energy suppressed corrections)
-Can we plot amplitudes at finite coupling?
- Can we explore/learn something about amplitudes at non-perturbative level?

Example : factorization of scattering amplitudes


## Other applications?

- Can we get a systematic expansion in the Regge limit (i.e., understand the infinite tower of daughter trajectories controlling energy suppressed corrections)
-Can we plot amplitudes at finite coupling?
- Can we explore/learn something about amplitudes at non-perturbative level?

Example : factorization of scattering amplitudes
[work in progress with Sever andVieira]
[Dixon,von Hippel'I4],
[Dixon,von
Hippel,McLeod'I5]

Dual limit for Wilson loops corresponds to two cusps becoming null separated (This limit is within radius of convergency of the OPE)


## Other applications?

- Can we get a systematic expansion in the Regge limit (i.e., understand the infinite tower of daughter trajectories controlling energy suppressed corrections)
-Can we plot amplitudes at finite coupling?
- Can we explore/learn something about amplitudes at non-perturbative level?

Example : factorization of scattering amplitudes
Toy model : $\quad I \equiv \int_{0}^{\infty} d u e^{-u p^{2}-\Gamma_{\text {cusp }} \log ^{2} u}$

1) At weak coupling

$$
I=\frac{1}{p^{2}} \sum_{l} g^{2 l} \operatorname{Pol}_{l}\left(\log p^{2}\right)
$$

## Other applications?

- Can we get a systematic expansion in the Regge limit (i.e., understand the infinite tower of daughter trajectories controlling energy suppressed corrections)
-Can we plot amplitudes at finite coupling?
- Can we explore/learn something about amplitudes at non-perturbative level?

Example : factorization of scattering amplitudes
Toy model : $\quad I \equiv \int_{0}^{\infty} d u e^{-u p^{2}-\Gamma_{\text {cusp }} \log ^{2} u}$

1) At weak coupling

$$
I=\frac{1}{p^{2}} \sum_{l} g^{2 l} \operatorname{Pol}_{l}\left(\log p^{2}\right)
$$

2) At any $g \neq 0$

$$
\left.I\right|_{p^{2}=0}=\int_{0}^{\infty} d u e^{-\Gamma_{\text {cusp }} \log ^{2} u}<\infty \quad \text { No pole! }
$$

## Other applications?

- Can we get a systematic expansion in the Regge limit (i.e., understand the infinite tower of daughter trajectories controlling energy suppressed corrections)
-Can we plot amplitudes at finite coupling?
- Can we explore/learn something about amplitudes at non-perturbative level?

Example : factorization of scattering amplitudes
Toy model : $\quad I \equiv \int_{0}^{\infty} d u e^{-u p^{2}-\Gamma_{\text {cusp }} \log ^{2} u}$

1) At weak coupling

$$
I=\frac{1}{p^{2}} \sum_{\infty} g^{2 l} \operatorname{Pol}_{l}\left(\log p^{2}\right)
$$

2) At any $g \neq 0$

$$
\left.I\right|_{p^{2}=0}=\int_{0}^{\infty} d u e^{-\Gamma_{\text {cusp }} \log ^{2} u}<\infty \quad \text { No pole! }
$$

3) There is a smooth discontinuity
$\operatorname{Dis} A_{6} \propto e^{-\Gamma_{\text {cusp }} \log ^{2}\left(p^{2}\right)} \neq 0$

## Other applications?

- Can we get a systematic expansion in the Regge limit (i.e., understand the infinite tower of daughter trajectories controlling energy suppressed corrections)
-Can we plot amplitudes at finite coupling?
- Can we explore/learn something about amplitudes at non-perturbative level?

Example : factorization of scattering amplitudes

Cartoon of what is happening



## Structure constants and string splitting/joining

$$
\left\langle\mathcal{O}_{1}\left(x_{1}\right) \mathcal{O}_{2}\left(x_{2}\right) \mathcal{O}_{3}\left(x_{3}\right)\right\rangle=\frac{C_{123}}{x_{12}^{\Delta_{12}} x_{23}^{\Delta_{23}} x_{13}^{\Delta_{13}}}
$$

## Spin chain tayloring

[Many people, see e.g.
Escobedo,Gromov,Sever,Vieira, Foda,Fleury,Caetano,
Kazama,Komatsu,Nishimura, Jiang,Kostov,Petrovskii,Serban, etc.]

- 3 operators
- 3 bridges



## Inspiration from string



3-punctured sphere
pair of pants

## Cutting procedure

Cut in smaller pieces

I pair of pants = 2 hexagons

Same with magnons


## Hexagon factorization

## Elementary block

[BB,Komatsu,Vieira'I5]


## Hexagon form factor :

- Contribution of an hexagon decorated with magnons on its edges
- Apply integrable bootstrap again to determine it at finite coupling


## $\mathbf{N}$-magnon hexagon

Conjecture (one can actually prove it for low number of magnons):


$$
\mathfrak{h}^{A_{1} \dot{A}_{1} \cdots A_{N} \dot{A}_{N}}=(-1)^{\mathfrak{f}} \prod_{i<j}^{N} h_{i j}\left\langle\chi_{N}^{\dot{A}_{N}} \ldots \chi_{1}^{\dot{A}_{1}}\right| \mathcal{S}\left|\chi_{1}^{A_{1}} \ldots \chi_{N}^{A_{N}}\right\rangle
$$

## Concrete formula

Hexagon prediction :
$\left(\frac{C_{123}^{\bullet \circ \circ}}{C_{123}^{\circ \circ \circ}}\right)^{2}=\frac{\prod_{k=1}^{S} \mu\left(u_{k}\right)}{\operatorname{det} \partial_{u_{i}} \phi_{j} \prod_{i<j} S\left(u_{i}, u_{j}\right)} \times \mathcal{A}^{2}$

## Non-BPS

$$
\text { e.g. } \mathcal{O}_{1}=\operatorname{tr} D^{S} Z^{L_{1}}
$$

Hexagon part
sum over partitions of Bethe Roots

$$
\mathcal{A}=\prod_{i<j} h\left(u_{i}, u_{j}\right) \sum_{\alpha \cup \bar{\alpha}=\mathbf{u}}(-1)^{|\bar{\alpha}|} \prod_{j \in \bar{\alpha}} e^{i p_{j} \ell} \prod_{i \in \alpha, j \in \bar{\alpha}} \frac{1}{h\left(u_{i}, u_{j}\right)}
$$

Valid to all loops up to finite size effects

## Finite size effects



## Comparison with data

| Spin | "Long" Bridge i.e. length $\ell=2$ |
| :---: | :--- |
| 2 | $\frac{1}{6}-2 g^{2}+28 g^{4}+\ldots$ |
| 4 | $\frac{1}{70}-\frac{205}{882} g^{2}+\frac{36653}{9261} g^{4}+\ldots$ |
| 6 | $\frac{1}{924}-\frac{553}{27225} g^{2}+\frac{826643623}{2156220000} g^{4}+\ldots$ |
| 8 | $\frac{1}{12870}-\frac{14380057}{9018009000} g^{2}+\frac{2748342985341731}{85305405235050000} g^{4}+\ldots$ |
| 10 | $\frac{1}{184756}-\frac{3313402433}{27991929747600} g^{2}+\frac{156422034186391633909}{62201169404983234080000} g^{4}+\ldots$ |


| Spin | "Short" Bridge i.e. length $\ell=1$ |
| :---: | :--- |
| 2 | $\frac{1}{6}-2 g^{2}+\left(28+12 \zeta_{3}\right) g^{4}+\ldots$ |
| 4 | $\frac{1}{70}-\frac{205}{882} g^{2}+\left(\frac{76393}{18522}+\frac{10}{7} \zeta_{3}\right) g^{4}+\ldots \quad$ 2-loop finite size effect |
| 6 | $\frac{1}{924}-\frac{553}{27225} g^{2}+\left(\frac{880821373}{2156220000}+\frac{7}{55} \zeta_{3}\right) g^{4}+\ldots$ |
| 8 | $\frac{1}{12870}-\frac{14380057}{9018009000} g^{2}+\left(\frac{5944825782678337}{170610810470100000}+\frac{761}{75075} \zeta_{3}\right) g^{4}+\ldots$ |
| 10 | $\frac{1}{184756}-\frac{3313402433}{27991929747600} g^{2}+\left(\frac{171050793565932326659}{62201169404983234080000}+\frac{671}{881790} \zeta_{3}\right) g^{4}+\ldots$ |

perfect agreement
(including zeta's coming from finite size corrections)

## Conclusions

Integrability comes with powerful new strategies for computing quantities at any value of the coupling in planar N=4 SYM theory

It allows us to attack increasingly complicated objects and find all-loop expressions (conjectures) for them, like for amplitudes, structure constants, etc.

How far can we go? Can we bootstrap string loops? Can we solve to any order in the I/N expansion?

How can we prove all these conjectures? Can one understand why is this theory integrable after all?

## THANK YOU!

