

Established by the European Commission

AUTOMATED ELECTROWEAK CORRECTIONS WITH MADGRAPH5_AMC@NLO

HUA-SHENG SHAO
THEORETICAL PHYSICS DEPARTMENT, CERN

BASED ON WORK WITH

MADGRAPH5_AMC@NLO COLLABORATION

AND EW SUBGROUP:

R. FREDERIX, S. FRIXIONE, V. HIRSCHI, D. PAGANI, M. ZARO

- Relevance of EW corrections at LHC run II:
 - Energy reach extends deeper into TeV range
 - Integrated luminosity will reach some 100 fb-1
 - Planned many high-precision measurements

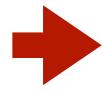
- Relevance of EW corrections at LHC run II:
 - Energy reach extends deeper into TeV range
 - Integrated luminosity will reach some 100 fb-1
 - Planned many high-precision measurements

- Relevance of EW corrections at LHC run II:
 - Energy reach extends deeper into TeV range
 - Integrated luminosity will reach some 100 fb-1
 - Planned many high-precision measurements

- Possible further enhancement in EW corrections:
 - Electromagnetic logarithms, e.g. initial-state radiation at LEP $\alpha \log \frac{M_Z^2}{m_z^2} \sim 3.0\%$

EW Sudakov corrections at high energy
$$\frac{\alpha}{2s_w^2}\log^2\frac{s}{M_W^2}\sim 6.6\%$$
 when $\sqrt{s}=1~{\rm TeV}$

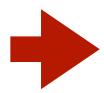
Possible new opened topologies/channels


- Relevance of EW corrections at LHC run II:
 - Energy reach extends deeper into TeV range
 - Integrated luminosity will reach some 100 fb-1
 - Planned many high-precision measurements

- Possible further enhancement in EW corrections:
 - Electromagnetic logarithms, e.g. initial-state radiation at LEP $\alpha \log \frac{M_Z^2}{m_z^2} \sim 3.0\%$

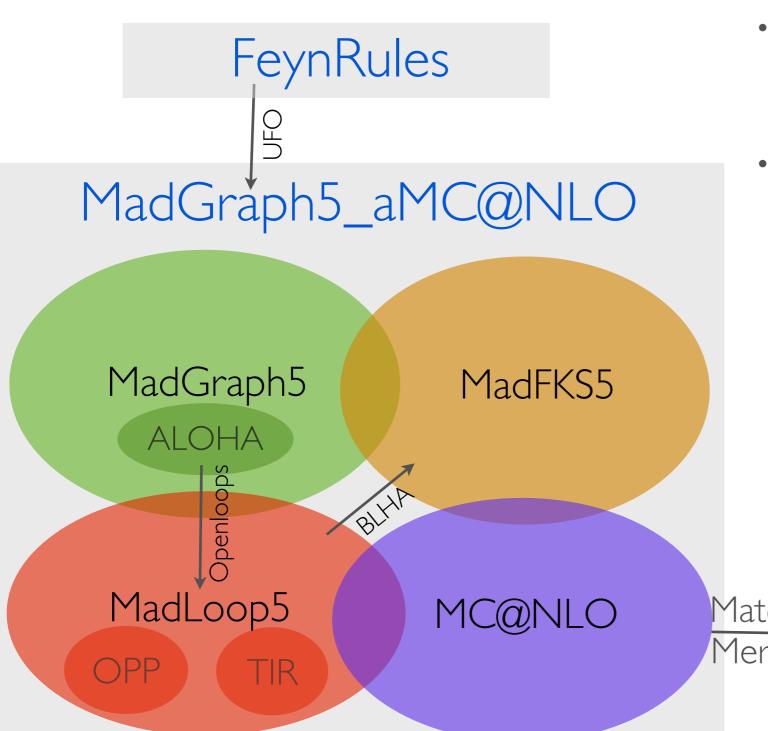
EW Sudakov corrections at high energy
$$\frac{\alpha}{2s_w^2}\log^2\frac{s}{M_W^2}\sim 6.6\%$$
 when $\sqrt{s}=1~{\rm TeV}$

Possible new opened topologies/channels


Necessary for complete EWK!

- Relevance of EW corrections at LHC run II:
 - Energy reach extends deeper into TeV range
 - Integrated luminosity will reach some 100 fb-1
 - Planned many high-precision measurements

- Possible further enhancement in EW corrections:
 - Electromagnetic logarithms, e.g. initial-state radiation at LEP $\alpha \log \frac{M_Z^2}{m_e^2} \sim 3.0\%$
 - EW Sudakov corrections at high energy $\frac{\alpha}{2s_{m}^{2}}\log^{2}\frac{s}{M_{W}^{2}}\sim 6.6\%$ when $\sqrt{s}=1~{\rm TeV}$
 - Possible new opened topologies/channels

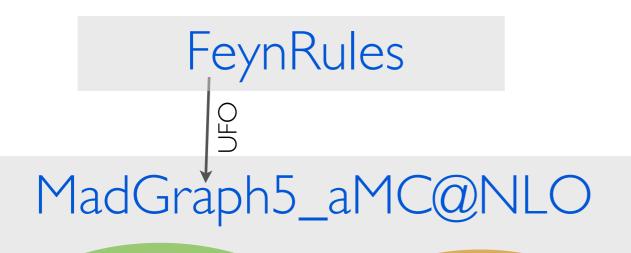

Necessary for complete EWK!

• EWK automation collaborations:

MadGraph5_aMC@NLO, Openloops, Recola, GoSam, ...

JOINT EFFORTS FOR AUTOMATION AT NLO

J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, HSS, T. Stelzer, P. Torrielli, M. Zaro (2014)


- First official (non-beta) version was released in 16 Dec 2013.
- A first public code that provides NLO-QCD in SM and its interface to the shower automatically.

Matching Merging

PSMC

JOINT EFFORTS FOR AUTOMATION AT NLO

J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, HSS, T. Stelzer, P. Torrielli, M. Zaro (2014)

- First official (non-beta) version was released in 16 Dec 2013.
- A first public code that provides NLO-QCD in SM and its interface to the shower automatically.

```
./bin/mg5_aMC
MG5_aMC > define Wpm = W+ W-
MG5_aMC > generate p p > t t~ Wpm [QCD]
MG5_aMC > output ttw
MG5_aMC > launch

MadLoop5
MC@NLO
Matching
Merging
Merging
Merging
Merging
```

JOINT EFFORTS FOR AUTOMATION AT NLO

J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, HSS, T. Stelzer, P. Torrielli, M. Zaro (2014)

FeynRules

MadGraph5_aMC@NLO

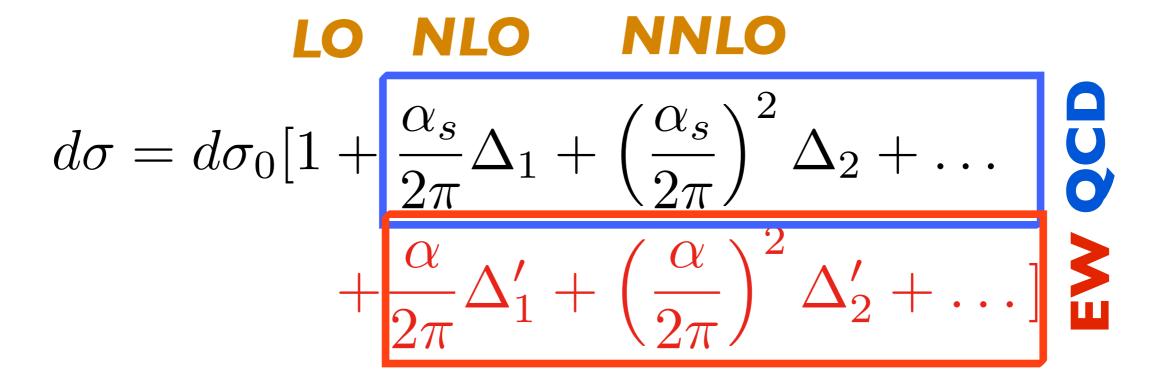
- First official (non-beta) version was released in 16 Dec 2013.
- A first public code that provides NLO-QCD in SM and its interface to the shower automatically.

```
./bin/mg5_aMC
MG5_aMC > define Wpm = W+ W-
MG5_aMC > generate p p > t t~ Wpm QCD=n
QED=m[QCD QED]
MG5_aMC > output ttw
MG5_aMC > launch

MadLoop5
MC@NLO Matching
Merging PSMC
```

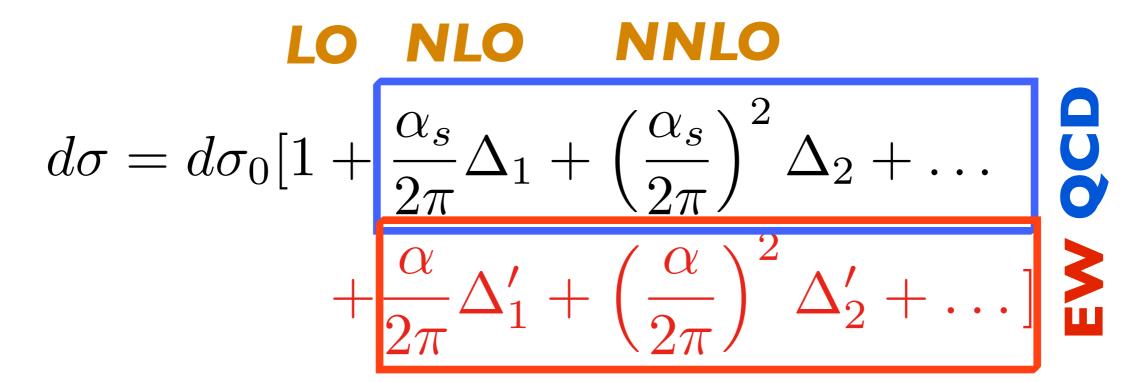

 Expand the cross-section as a series in the perturbative couplings:

$$d\sigma = d\sigma_0 \left[1 + \frac{\alpha_s}{2\pi} \Delta_1 + \left(\frac{\alpha_s}{2\pi}\right)^2 \Delta_2 + \dots\right]$$


• Expand the cross-section as a series in the perturbative couplings:

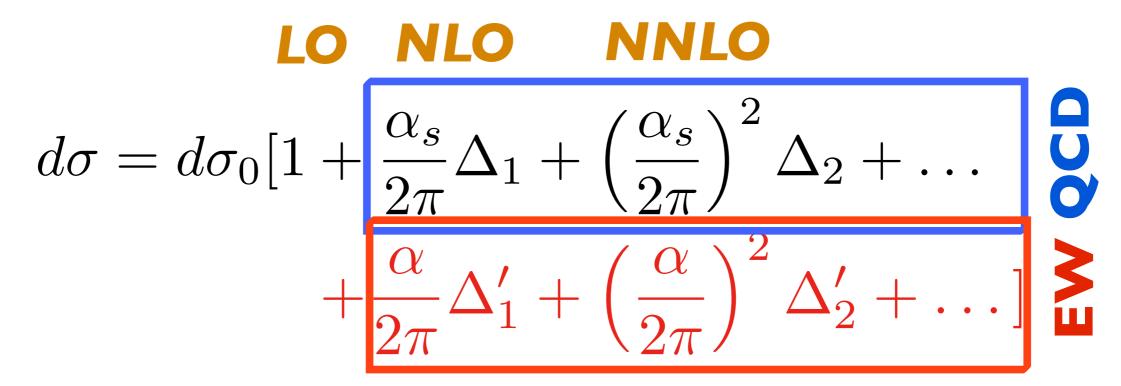
NLO NNLO

$$d\sigma = d\sigma_0 \left[1 + \frac{\alpha_s}{2\pi} \Delta_1 + \left(\frac{\alpha_s}{2\pi}\right)^2 \Delta_2 + \dots \right]$$



• Expand the cross-section as a series in the perturbative couplings:

 Expand the cross-section as a series in the perturbative couplings:



• Strong coupling dominants, but still numerically one has:

$$\alpha \sim 0.01 = 0.1^2 \sim \alpha_s^2$$

 Expand the cross-section as a series in the perturbative couplings:

• Strong coupling dominants, but still numerically one has:

$$\alpha \sim 0.01 = 0.1^2 \sim \alpha_s^2$$

 Necessary for the the precision test and especially in the EW Sudakov region.

• Complicated CT vertices (UV+R2),e.g. top mass renorm:

• Complicated CT vertices (UV+R2),e.g. top mass renorm:

texname = '\delta m_t^{EW}')

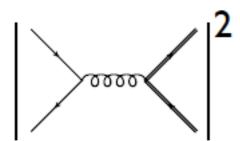
```
tMass_UV_EW = CTParameter(name = 'tMass_UV_EW',
                                                                                                             type = 'complex',
                                                                                                             value = {-1:'recms(CMSParam==1.0 and WT != 0,(ee**2*MT*(MW**2*(3 + 24*sw**2 - 32*sw**4) + cw**2*(9*MT**2 + 2*MW**2*(3 - 16*sw**2*)
))))/(384.*cw**2*MW**2*cmath.pi**2*sw**2))'+'+'+dMB_tMass_UV_EW.value[-1],
                                                                                                             0:'recms(CMSParam==1.0 and WT != 0,-(ee**2*(9*cw**2*MT**2 - 72*cw**2*MT**4 - 18*MT**2*MW**2 - 9*cw**2*MT**2*MW**2 + 18*cw
**2*MW**4 + 9*cw**2*MT**2*MZ**2 + 9*MW**2*MZ**2 + 9*MW**2*Sw**2 + 128*cw**2*MV**2*Sw**2 - 24*MW**2*Sw**2 + 128*MT**2*MW**2*Sw**4 + 32*M\
w**2*MZ**2*Sw**4 - 9*cw**2*MT**4*reglog(16) + 9*cw**2*MT**4*reglog(1/(4.*cmath.pi)) - 24*MT**2*MW**2*reglog(1/(4.*cmath.pi)) - 24*MT**2*MW**2*MT**2*MW**2**MT**2*MW**2**MT**2*MW**2*MT**2*MW**2**MT**2*MW**2**MT**2*MW**2**MT**2*MW**2**MT**2*MW**2**MT**2*MW**2**MT**2*MW**2**MT**2*MW**2**MT**2*MW**2**MT**2*MW**2**MT**2*MW**2**MT**2*MW**2**MT**2*MW**2**MT**2*MW**2**MT**2*MW**2**MT**2*MW**2**MT**2*MW**2**MT**2*MW**2**MT**2*MW**2**MT**2*MW**2**MT**2*MW**2**MT**2*MW**2**MT**2*MW**2**MT**2*MW**2**MT**2*MW**2**MT**2*MW**2**MT**2*MW**2**MT**2*MW**2**MT**2*MW**2**MW**2**MT**2*MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2**MW**2*
1/(4.*cmath.pi)) + 16*MT**2*MW**2*sw**4*reglog(1/(4.*cmath.pi)) - 18*cw**2*MT**4*reglog(cmath.pi) + 96*MT**2*Sw**2*reglog(cmath.pi) - 112*cw**2*MT**\
2*MW**2*sw**2*reglog(cmath.pi) - 128*MT**2*MW**2*sw**4*reglog(cmath.pi) - 192*MT**2*MW**2*sw**2*reglog(2*Cmath.pi) + 224*cw**2*MW**2*sw**2*reglog(2*Cmath.pi) + 224*cw**2*MU**2*sw**2*reglog(2*Cmath.pi) + 224*cw**2*sw**2*reglog(2*Cmath.pi) + 224*cw**2*sw**2*regl
cmath.pi) + 256*MT**2*MW**2*sw**4*reglog(2*cmath.pi) + 27*cw**2*MT**4*reglog(4*cmath.pi) + 9*MT**2*MW**2*reglog(4*cmath.pi) + 72*MT**2*MW**2*sw**2*reglog(\)
4*cmath.pi) - 112*cw**2*MT**2*MW**2*sw**2*reglog(4*cmath.pi) - 112*MT**2*MW**2*sw**4*reglog(4*cmath.pi)))/(1152.*cw**2*MT*MW**2*scmath.pi=*2*sw**2) + (ee**\
2*MH**2*MT*reglog(MU_R**2/MH**2))/(128.*MW**2*sw**2) - (ee**2*MT**2 + 9*MW**2 + 9*MW
sw**4)*reglog(MU_R**2/MT**2))/(1152.*cw**2*MW**2*cmath.pi**2*sw**2) + (ee**2*MT*(MT**2 + 2*MW**2)*reglog(MU_R**2/MW**2))/(128.*MW**2*cmath.pi**2*sw**2) + \
2*MH**2*MT**2 + 36*cw**2*MT**2 + 36*cw**2*MT**2 + 36*cw**2*MT**2 + 36*cw**2*Sw**2 + 24*MW**2*Sw**2 + 24*MW**2 + 2
   - 32*MW**2*MZ**2*sw**4)*reglog((MT**2 + vep*complex(0,-1))/MU_R**2))/(1152.*cw**2*MT*MW**2*cmath.pi**2*sw**2) - (ee**2*(MT - MW)**2*(MT + MW)**2*(MT**2 + \
  2*MW**2*reglogm((-MT**2 + MW**2 + vep*complex(0,-1))/MW**2))/(128.*MT**3*MW**2*cmath.pi**2*sw**2) + (ee**2*(-18*MT**2*MW**2 + 9*cw**2*MT**2*MX**2 + 9*MWX*2)
**2*MZ**2 - 48*MT**2*MW**2*SW**2 - 24*MW**2*MZ**2*SW**2 + 64*MT**2*MW**2*SW**4 + 32*MW**2*MZ**2*SW**4)*reglog((-MZ**2 - cmath.sqrt(MZ**4 - 4*MT**2*CMZ**2*SW**4)*reglog((-MZ**2 - cmath.sqrt(MZ**2*SW**4)*reglog((-MZ**2 - cmath.sqrt(MZ**2 - cmath.sqrt(
+ vep*complex(0,-1))))/(2.*MT**2)))/(1152.*cw**2*MT*MW**2*cmath.pi**2*sw**2) + (ee**2*(-18*MT**2*MW**2 + 9*cw**2*MT**2*MZ**2 + 9*MW**2*MZ**2 - 48*MT**2*MW\
**2*sw**2 - 24*MW**2*MZ**2*sw**2 + 64*MT**2*MW**2*sw**4 + 32*MW**2*sw**4 + 32*MW**2*sw**4 + cmath.sqrt(MZ**4 - 4*MT**2*(MZ**2 + vep*complex(0,-1))))/\
(2.*MT**2)))/(1152.*cw**2*MT*MW**2*cmath.pi**2*sw**2) - (ee**2*(-18*MT**2*MW**2 + 9*cw**2*MT**2*MZ**2 + 9*NW**2*MZ**2 - 48*MT**2*MW**2*Sw**2 - 24*MW**2*MZ
**2*SW**2 + 64*MT**2*MW**2*SW**4 + 32*MW**2*MZ**2*SW**4)*(2*MT**2 + Cmath.sqrt(-4*MT**2*MZ**2 + MZ**4 + MT**2*vep*complex(0,4)))*reglog((-MZ**2 + \
cmath.sqrt(MZ**4 - 4*MT**2*(MZ**2 + vep*complex(0,-1))))/(2*MT**2 - MZ**2 + cmath.sqrt(MZ**4 - 4*MT**2*(MZ**2 + vep*complex(0,-1)))))/(2*MT**3 + vep*complex(0,-1))))/(2*MT**2 + cmath.sqrt(MZ**4 - 4*MT**2*(MZ**2 + vep*complex(0,-1))))/(2*MT**3 + vep*complex(0,-1))))/(2*MT**3 + vep*complex(0,-1))))/(2*MT**3 + vep*complex(0,-1)))/(2*MT**3 + vep*complex(0,-1))/(2*MT**3 + vep*complex(0,-1))
**W**2*cmath.pi**2*sw**2 - (ee**2*(-18*MT**2*MW**2 + 9*cw**2*MT**2*MW**2*MZ**2 - 48*MT**2*MW**2*Sw**2 - 24*MW**2*MZ**2*Sw**2 + 64*MT**2*MW**2*Sw**2 + 64*MT**2*MW**2*MT**2*Sw**2 + 64*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT***2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*
**4 + 32*MW**2*MZ**2*sw**4)*(2*MT**2 - MZ**2 - cmath.sqrt(-4*MT**2*MZ**2 + MZ**4 + MT**2*vep*complex(0,4)))*reglog((MZ**2 + cmath.sqrt(MZ**4 - 4*MT**2*(MZ**4 + MT**2*vep*complex(0,4)))
**2 + vep*complex(0,-1))))/(-2*MT**2 + MZ**2 + cmath.sqrt(MZ**4 - 4*MT**2*(MZ**4 + vep*complex(0,-1))))))/(2304.*cw**2*MT**3*MW**2*cmath.pi**2*sw**2) - (e\
e^{-2*MT*(-MH + 2*MT)*(MH + 2*MT)*reglog(-1 + (MH**2 - cmath.pi**2*sw**2)}
   -(ee**2*MT*(-MH + 2*MT)*(MH + 2*MT)*reglog(-1 + (MH**2 + cmath.sqrt(MH**4 - 4*MT**2*(MH**2 + vep*complex(0,-1))))/(2.*MT**2)))/(128.*MW**2*cmath.pi**2*s)
***2) + (ee**2*(-MH + 2*MT)*(MH + 2*MT)*(MH**2 + cmath.sqrt(MH**4 - 4*MH**2*MT**2 + MT**2*vep*complex(0,4)))*reglog((MH**2 - 2*MT**2 + cmath.sqrt(MH**4 - \
4*MH**2*MT**2 + MT**2*vep*complex(0,4)))/(MH**2 + cmath.sqrt(MH**4 - 4*MH**2*MT**2 + MT**2*vep*complex(0,4))))/(256.*MT*MW**2*cmath.pi**2*sw**2) + (ee**2\)
*(-MH + 2*MT)*(MH + 2*MT)*(MH**2 - cmath.sqrt(MH**4 - 4*MH**2*MT**2 + MT**2*vep*complex(0,4)))*reglog((-MH**2 + 2*MT**2 + cmath.sqrt(MH**4 - 4*MH**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT***MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT
   + MT**2*vep*complex(0,4))))/(-MH**2 + cmath.sqrt(MH**4 - 4*MH**2*Vep*complex(0,4)))))/(256.*MT*MW**2*cmath.pi**2*sw**2))'+'+'+dMB_tMass_UV_E\
w.value[0]},
```

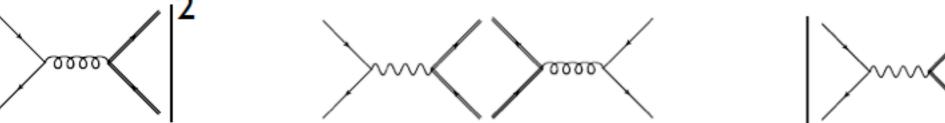

• Complicated CT vertices (UV+R2),e.g. top mass renorm:

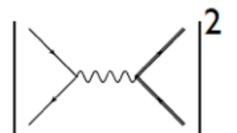
Require automation for NLO EW in BSM !!!

• Complicated CT vertices (UV+R2),e.g. top mass renorm:

Require automation for NLO EW in BSM !!!


 Mixed-order expansion when combining QCD+EW corrections (e.g. ttbar):



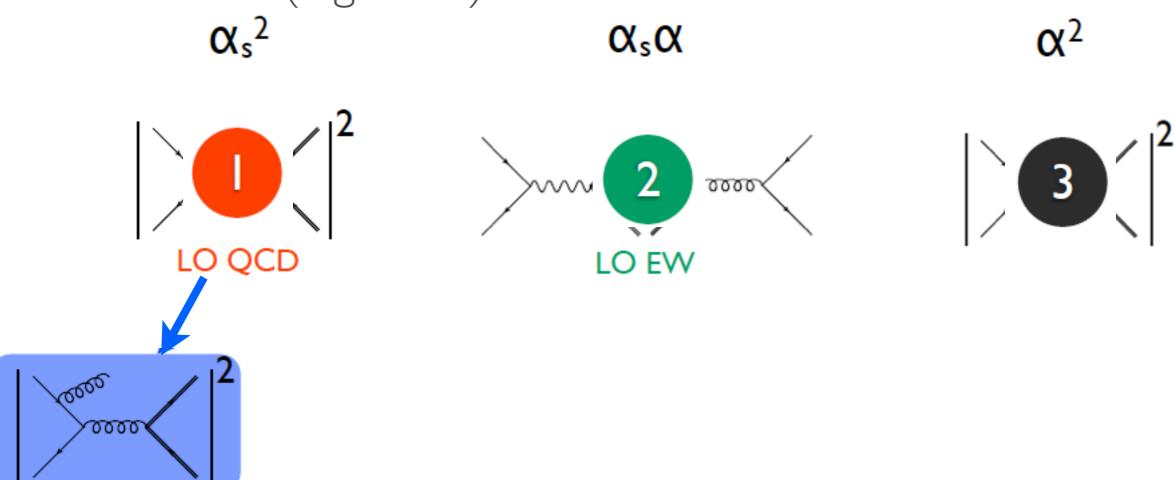


Require automation for NLO EW in BSM !!!

 Mixed-order expansion when combining QCD+EW corrections (e.g. ttbar):

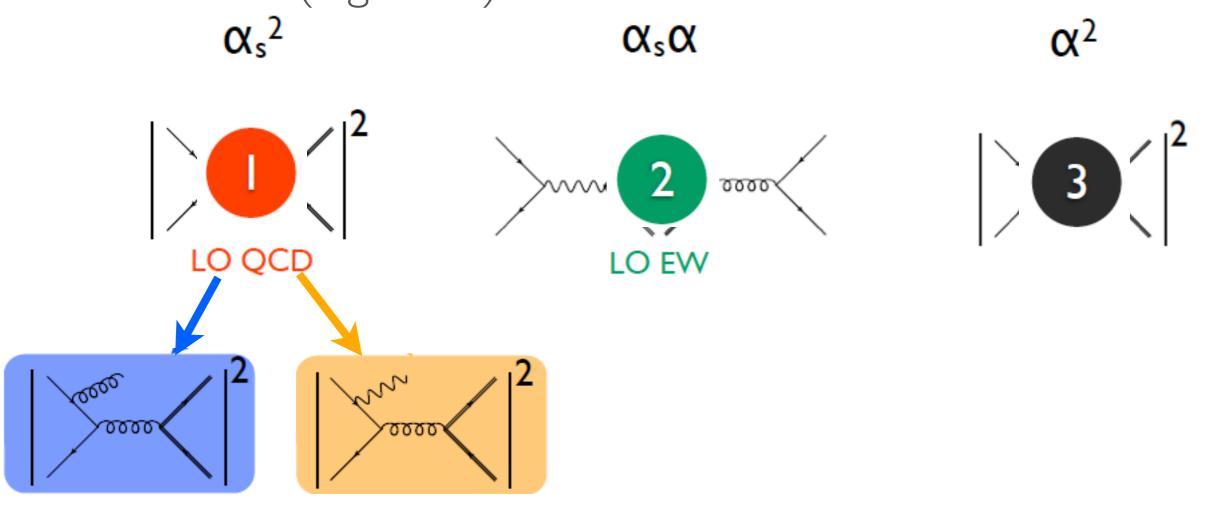
Require automation for NLO EW in BSM !!!

 Mixed-order expansion when combining QCD+EW corrections (e.g. ttbar):


 α_s^2 $\alpha_s \alpha$ α_s^2 $\alpha_s \alpha$ α_s^2 $\alpha_s^$

Require automation for NLO EW in BSM !!!

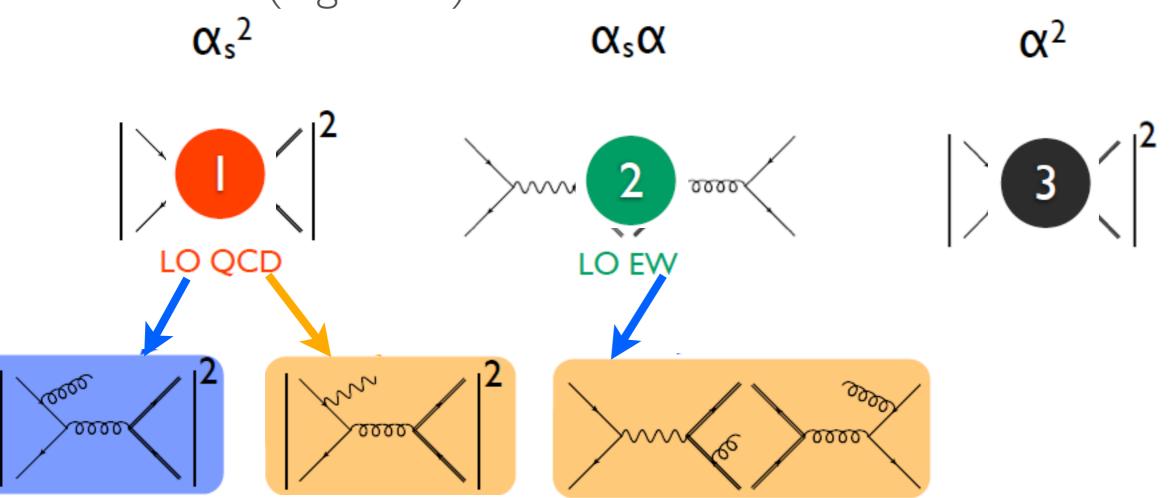
 Mixed-order expansion when combining QCD+EW corrections (e.g. ttbar):


NLO QCD is α_s correction to LO QCD

• Complicated CT vertices (UV+R2),e.g. top mass renorm:

Require automation for NLO EW in BSM !!!

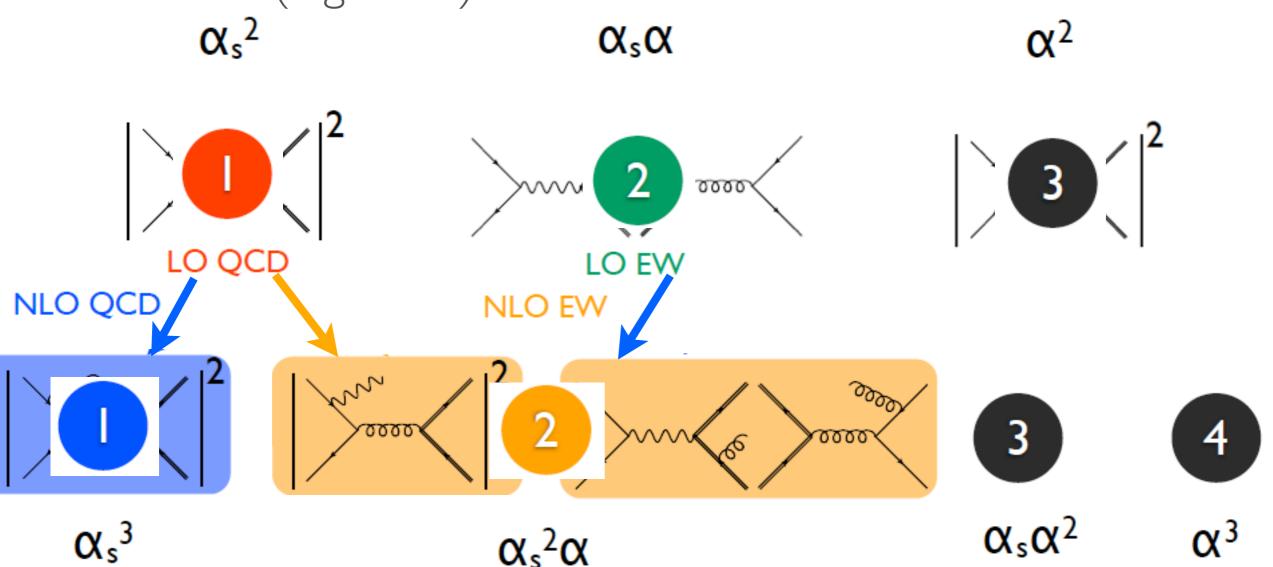
 Mixed-order expansion when combining QCD+EW corrections (e.g. ttbar):


NLO EW can be α correction to LO QCD

• Complicated CT vertices (UV+R2),e.g. top mass renorm:

Require automation for NLO EW in BSM !!!

 Mixed-order expansion when combining QCD+EW corrections (e.g. ttbar):


NLO EW can also be α_s correction to LO EW

• Complicated CT vertices (UV+R2),e.g. top mass renorm:

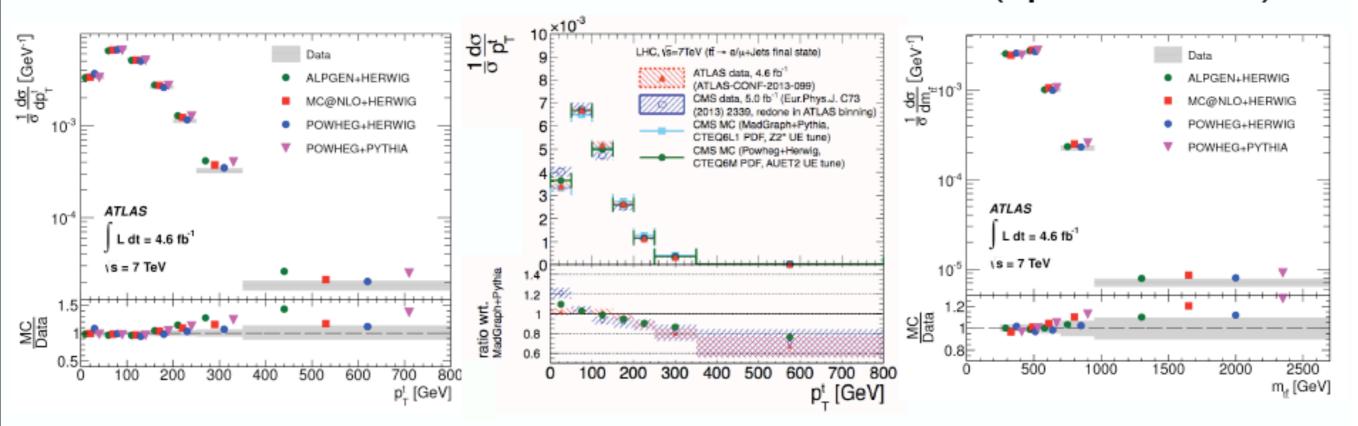
Require automation for NLO EW in BSM !!!

 Mixed-order expansion when combining QCD+EW corrections (e.g. ttbar):

- Loop computation: MadLoop V. Hirschi et al. (2011); J. Alwall et al. (2014)
 - OPP: CutTools G. Ossola et al. (2006,2007)
 - orTIR:
 - Golem 95 T. Binoth et al. (2008), PJFry++ V. Yundin (2012), IREGI HSS unpublished
 - Renormalization in $\alpha(M_Z)$ or G_μ scheme.
 - Well advanced validation for complex-mass scheme.
- IR subtraction and integ: MadFKS R. Frederix et al. (2011); J. Alwall et al. (2014)
 - QCD+EW splittings
 - Keep track of mixed order combinations
 - More tricks in NLO QCD are generalized to QCD+EW

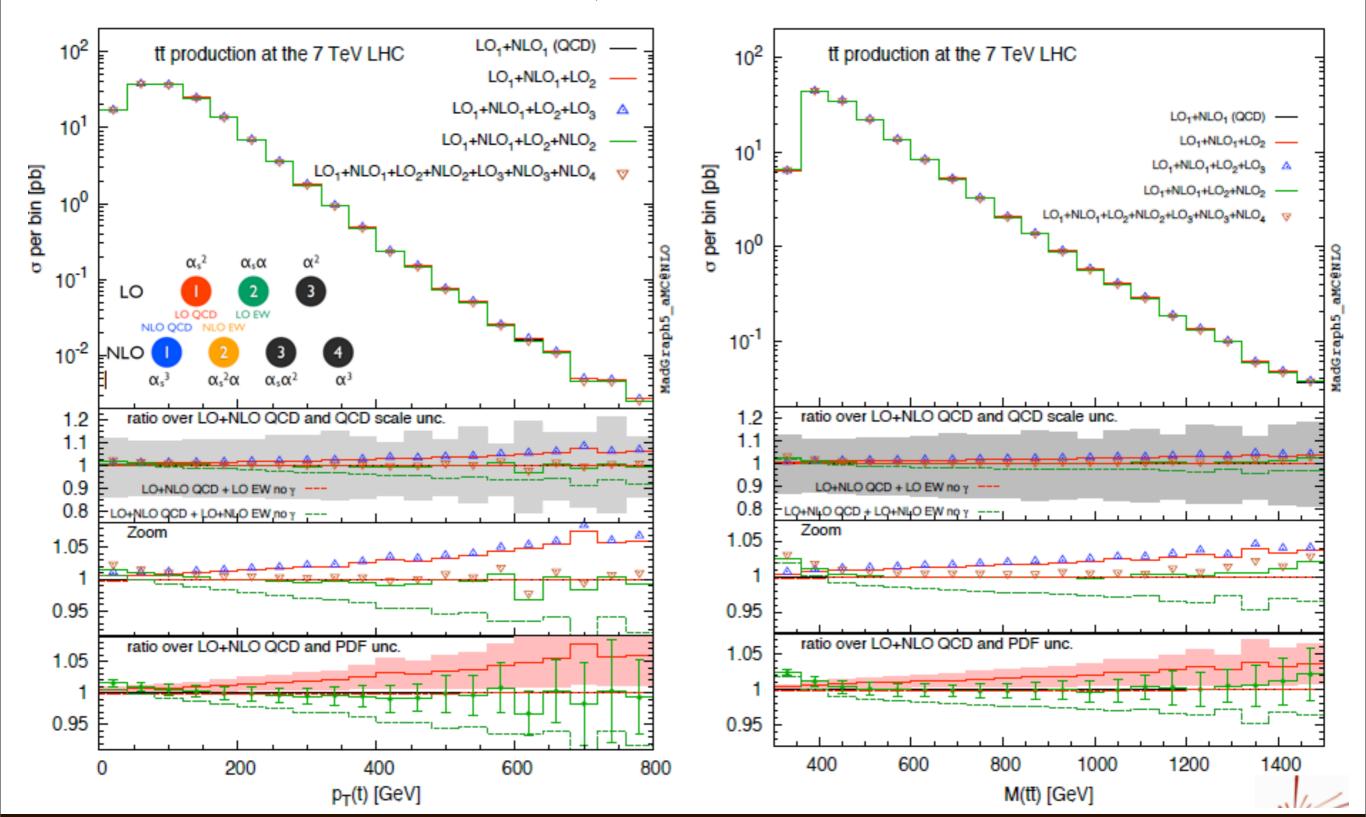
- Loop computation: MadLoop V. Hirschi et al. (2011); J. Alwall et al. (2014)
 - OPP: CutTools G. Ossola et al. (2006,2007)
 - orTIR:

Work in progress: matching to QCD+QED parton shower


- Well advanced validation for complex-mass scheme.
- IR subtraction and integ: MadFKS R. Frederix et al. (2011); J. Alwall et al. (2014)
 - QCD+EW splittings
 - Keep track of mixed order combinations
 - More tricks in NLO QCD are generalized to QCD+EW

WARMUP: TOP QUARK PAIR

courtesy of M. Zaro


- ATLAS and CMS see some 'anomaly' on the top p_T distribution and tt invariant mass
- Data are softer than NLO QCD MonteCarlos (up to 30-40%)

• Is it an EW effect?

WARMUP: TOP QUARK PAIR

WARMUP: TOP QUARK PAIR

- EW corrections account at most -10% at large p_T,
 -5% at large mass
- LO₂ has only $g\gamma$ and $b\overline{b}$ initial states; dominant γ -initiated contribution, need for PDFs with photons
- Photon effect as large as EW corrections, but almost 100% uncertain
- NLO₂ formally also includes heavy boson radiation (HBR).
 HBR not included for tt
- Subleading corrections (LO₃, NLO_{3,4}) very small

S. Frixione, V. Hirschi, D. Pagani, HSS, M. Zaro (2014,2015)

• Setup:

$$m_t=173.3~{
m GeV}\,, \qquad m_H=125~{
m GeV}\,, \ m_W=80.385~{
m GeV}\,, \qquad m_Z=91.188~{
m GeV}\,.$$

Coupling:

$$\frac{1}{\alpha(m_Z)} = 128.93$$
. $\alpha(m_Z)$ scheme.

$$G_{\mu} = 1.16639 \cdot 10^{-5} \longrightarrow \frac{1}{\alpha} = 132.23 \dots G_{\mu} \text{ scheme}$$

Scales:

$$\mu = \frac{H_T}{2} \equiv \frac{1}{2} \sum_{i} \sqrt{m_i^2 + p_T^2(i)}$$

LO+NLO OCD scale uncertainties in the range $\frac{1}{2}\mu \leq \mu_R, \mu_F \leq 2\mu$,

- PDF: NNPDF2.3QED $\alpha_S(m_Z) = 0.118$.
- Boosted regime:

$$p_T(t) \ge 200 \text{ GeV}, \quad p_T(\bar{t}) \ge 200 \text{ GeV}, \quad p_T(V) \ge 200 \text{ GeV}.$$

TOP QUARK PAIR+H/Z/W

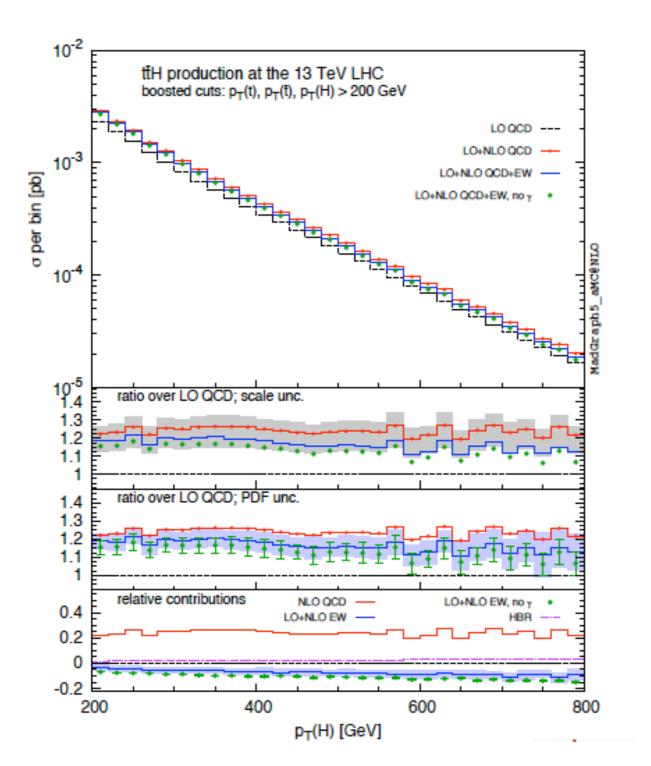
$t \bar{t} H: \sigma(\mathrm{pb})$	$13~{ m TeV}$
LO QCD	$3.617 \cdot 10^{-1} \ (1.338 \cdot 10^{-2})$
NLO QCD	$1.073 \cdot 10^{-1} \ (3.230 \cdot 10^{-3})$
LO EW	$4.437 \cdot 10^{-3} \ (3.758 \cdot 10^{-4})$
LO EW no γ	$-1.390 \cdot 10^{-3} \ (-2.452 \cdot 10^{-5})$
NLO EW	$-4.408 \cdot 10^{-3} \; (-1.097 \cdot 10^{-3})$
NLO EW no γ	$-4.919 \cdot 10^{-3} \ (-1.131 \cdot 10^{-3})$
HBR	$3.216 \cdot 10^{-3} \ (2.496 \cdot 10^{-4})$

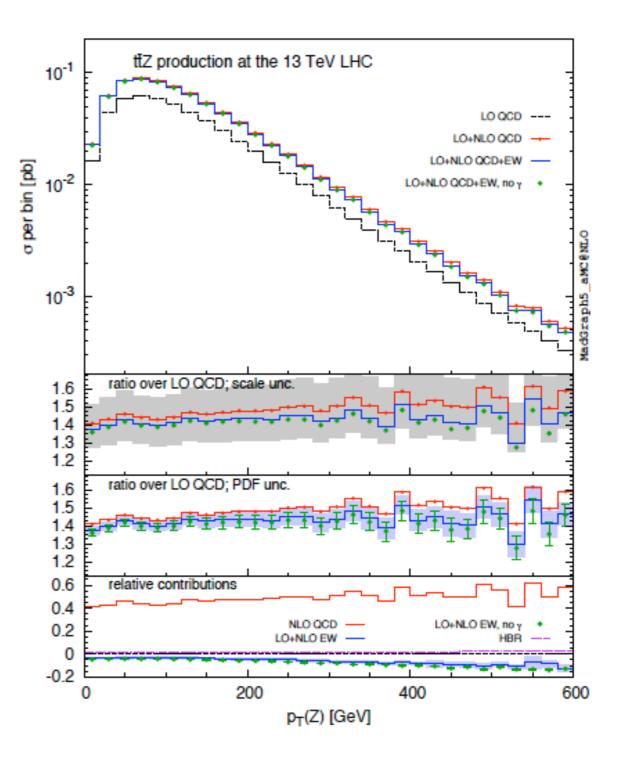
- EW correction is moderate in inclusive cross sections.
- It can be important in the boosted regime (values in parentheses)

$t \bar{t} H$: $\delta(\%)$	13 TeV
NLO QCD	$29.7^{+6.8}_{-11.1} \pm 2.8 \ (24.2^{+4.8}_{-10.6} \pm 4.5)$
LO EW	$1.2 \pm 0.9 (2.8 \pm 2.0)$
LO EW no γ	$-0.4 \pm 0.0 (-0.2 \pm 0.0)$
NLO EW	$-1.2 \pm 0.1 (-8.2 \pm 0.3)$
NLO EW no γ	$-1.4 \pm 0.0 (-8.5 \pm 0.2)$
HBR	0.89 (1.87)

- $\sigma_{\mathrm{HBR}}(t\bar{t}H) = \sigma(t\bar{t}HH) + \sigma(t\bar{t}HZ) + \sigma(t\bar{t}HW^+) + \sigma(t\bar{t}HW^-)$. Photon-induced contribution is important, especially in boosted regime.
 - HBR contribution is small. It is only partly cancel NLO EW.

- EW correction is moderate in inclusive cross sections.
- It can be important in the boosted regime (values in parentheses)
- Photon-induced contribution is important, especially in boosted regime.
- HBR contribution is small. It is only partly cancel NLO EW.




$t\bar{t}Z:\sigma(\mathrm{pb})$	$13 \mathrm{TeV}$
LO QCD	$5.282 \cdot 10^{-1} \ (1.955 \cdot 10^{-2})$
NLO QCD	$2.426 \cdot 10^{-1} \ (7.856 \cdot 10^{-3})$
LO EW	$-2.172 \cdot 10^{-4} \ (4.039 \cdot 10^{-4})$
LO EW no γ	$-5.771 \cdot 10^{-3} \ (-6.179 \cdot 10^{-5})$
NLO EW	$-2.017 \cdot 10^{-2} \; (-2.172 \cdot 10^{-3})$
NLO EW no γ	$-2.158 \cdot 10^{-2} \ (-2.252 \cdot 10^{-3})$
HBR	$5.056 \cdot 10^{-3} \ (4.162 \cdot 10^{-4})$

$t \bar{t} Z$: $\delta(\%)$	$13 \mathrm{TeV}$
NLO QCD	$45.9^{+13.2}_{-15.5} \pm 2.9 \ (40.2^{+11.1}_{-15.0} \pm 4.7)$
LO EW	$0.0 \pm 0.7 \; (2.1 \pm 1.6)$
LO EW no γ	$-1.1 \pm 0.0 \; (-0.3 \pm 0.0)$
NLO EW	$-3.8 \pm 0.2 (-11.1 \pm 0.5)$
NLO EW no γ	$-4.1 \pm 0.1 (-11.5 \pm 0.3)$
HBR	0.96 (2.13)

- EW correction is moderate in inclusive cross sections.
- It can be important in the boosted regime (values in parentheses)
- Photon-induced contribution is important, especially in boosted regime.
- HBR contribution is small. It is only partly cancel NLO EW.
 - ttZ is similar to ttH.

TOP QUARK PAIR+H/Z/W

$t\bar{t}W^+$: $\sigma(pb)$	$13~{ m TeV}$
LO QCD	$2.496 \cdot 10^{-1} \ (7.749 \cdot 10^{-3})$
NLO QCD	$1.250 \cdot 10^{-1} \ (4.624 \cdot 10^{-3})$
LO EW	0
LO EW no γ	0
NLO EW	$-1.931 \cdot 10^{-2} \; (-1.490 \cdot 10^{-3})$
NLO EW no γ	$-1.988 \cdot 10^{-2} \; (-1.546 \cdot 10^{-3})$
HBR	$9.677 \cdot 10^{-3} \ (5.743 \cdot 10^{-4})$

$t\bar{t}W^+:\delta(\%)$	$13 \mathrm{TeV}$
NLO QCD	$50.1^{+14.2}_{-13.5} \pm 2.4 \ (59.7^{+18.9}_{-17.7} \pm 3.1)$
LO EW	0
LO EW no γ	0
NLO EW	$-7.7 \pm 0.2 (-19.2 \pm 0.7)$
NLO EW no γ	$-8.0 \pm 0.2 (-20.0 \pm 0.5)$
HBR	3.88 (7.41)

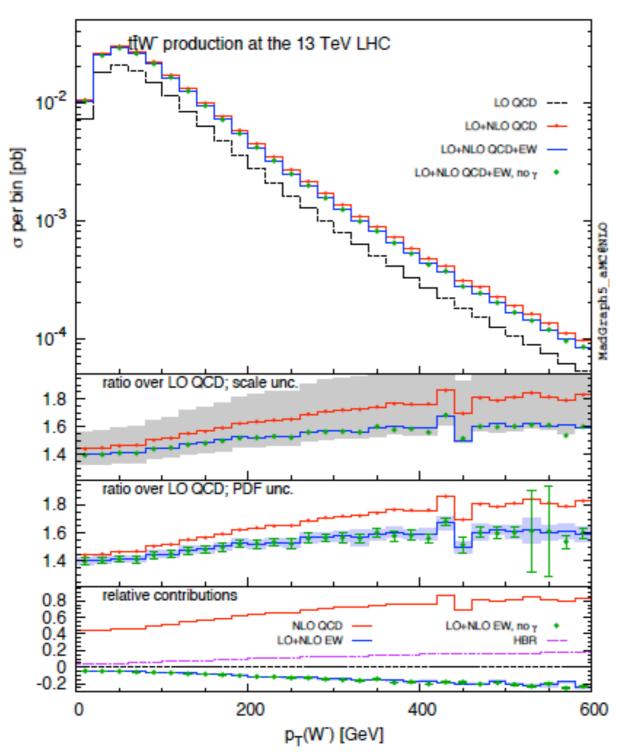
- EW correction is bigger in ttW.
- HBR is enhanced by initial parton luminosity: e.g. ttVVV has gluon-gluon initial states.
- No LO EW because of color flow.

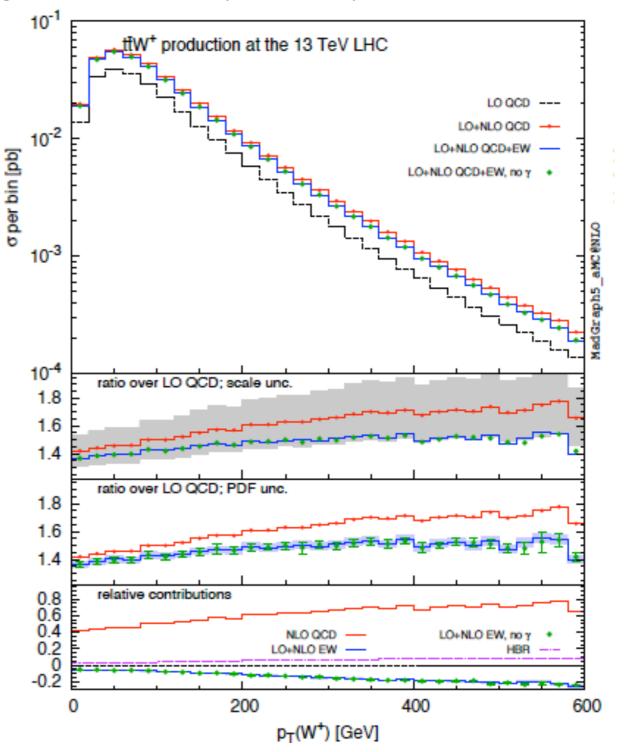
TOP QUARK PAIR+H/Z/W

S. Frixione, V. Hirschi, D. Pagani, HSS, M. Zaro (2014,2015)

$t\bar{t}W^-$: $\sigma(\mathrm{pb})$	$13 \mathrm{TeV}$
LO QCD	$1.265 \cdot 10^{-1} \ (3.186 \cdot 10^{-3})$
NLO QCD	$6.515 \cdot 10^{-2} \ (2.111 \cdot 10^{-3})$
LO EW	0
LO EW no γ	0
LO LW no /	U
NLO EW	$-8.502 \cdot 10^{-3} \; (-5.838 \cdot 10^{-4})$
•	$-8.502 \cdot 10^{-3} \ (-5.838 \cdot 10^{-4})$ $-8.912 \cdot 10^{-3} \ (-6.094 \cdot 10^{-4})$

•	EVV	correction	İS	bigger	in	tt\.
	— ' '		. •	.00		00 1 1 1


• HBR is enhanced by initial parton luminosity: e.g. ttVVV has gluon-gluon initial states.


$t ar{t} W^-: \delta(\%)$	13 TeV
NLO QCD	$51.5^{+14.8}_{-13.8} \pm 2.8 \ (66.3^{+21.7}_{-19.6} \pm 3.9)$
LO EW	0
LO EW no γ	0
NLO EW	$-6.7 \pm 0.2 (-18.3 \pm 0.8)$
NLO EW no γ	$-7.0 \pm 0.2 (-19.1 \pm 0.6)$
HBR	6.50 (15.01)

 No LO EW because of color flow.

TOP QUARK PAIR+H/Z/W

SUMMARY & OUTLOOK

- NLO EW predictions are well motivated and they become important at LHC Run II and future colliders.
- Much progress in automation of EW corrections has been achieved in MadGraph5_aMC@NLO. A first phenomenology application was out.
- Comparisons with other tools are ongoing, which were established in Les Houches Monte-Carlo workshop 2015. It will also be used in LHCHXSWGYR4 and FCC-hh physics report.
- The code will be public in the near future.

Thank you for your attention!