Standard Model: status & recent theory highlights

Emanuele Re

LAPTh Annecy

Rencontre de Physique des Particules LAPTh, Annecy-le-Vieux, 25 January 2016

the Standard Model today

at a first glance, the SM looks in as good a shape as it ever was...

Higgs boson discovery

quantum effects at 5 loops

 $115\ 965\ 218\ 17.8\ \pm\ 8$ [TH] $115\ 965\ 218\ 07.3\ \pm\ 2.8$ [EX]

the Standard Model today

▶ at a first glance, the SM looks in as good a shape as it ever was...

Higgs boson discovery

quantum effects at 5 loops

$$115\ 965\ 218\ 17.8\ \pm\ 8$$
 [TH] $115\ 965\ 218\ 07.3\ \pm\ 2.8$ [EX]

however a lot still remains to be understood...

plan of the talk

- 1. electroweak and strong sectors
 - . overview and selection of recent results

2. LHC Phenomenology

. highlights from last couple of years

disclaimer:

- by no means this talk is fully comprehensive (especially on 1.)
- the choice of presented results is biased
- apologies if I have left out some very relevant results (possibly yours)

the EW sector: precision observables

- test EW sector at the quantum level
- small tensions, but overall good agreement
- ▶ TH accuracy: ≥ 2 loops

lacktriangledown measuring m_W and m_t becomes relevant

. as for Higgs properties, TH input is needed

muonic q-2

[for more details: M. Passera talk at LFC15, Sep '15]

▶ long standing 3σ discrepancy for $(g-2)_{\mu}$

$$a_{\mu}^{\rm EX} = 116~592~091 \pm 63~(\times 10^{-11})$$
 BNL-E821 $a_{\mu}^{\rm TH} = 116~591~809 \pm 66~(\times 10^{-11})$ [Jegerlehner,Nyffeler]

interesting since can be "easily" explained with BSM

[for more details: M. Passera talk at LFC15, Sep '15]

▶ long standing 3σ discrepancy for $(g-2)_{\mu}$

$$a_{\mu}^{\rm EX} = 116~592~091 \pm 63~(\times 10^{-11})$$
 BNL-E821 $a_{\mu}^{\rm TH} = 116~591~809 \pm 66~(\times 10^{-11})$ [Jegerlehner,Nyffeler]

▶ interesting since can be "easily" explained with BSM

TH challenges: Hadronic LO (vacuum polarization)

$$\begin{array}{lcl} a_{\mu}^{\rm HLO} & = & \frac{\alpha^2}{3\pi^2} \int_{4m_{\pi}^2}^{\infty} \frac{ds}{s} \; K(s) \; R_{e^+e^- \to {\rm had}}(s) \\ K(s) & = & \int_0^1 dx \frac{x^2(1-x)}{x^2+(1-x)(s/m^2)} \end{array}$$

- ▶ HLO: from EXP, using dispersion relations
- ▶ different determinations are compatible however $\delta a_{\mu}^{\rm HLO} \simeq 40~(\times 10^{-11})$
- dominated by low-energy data (below 2 GeV)

muonic q-2

[for more details: M. Passera talk at LFC15, Sep '15]

▶ long standing 3σ discrepancy for $(g-2)_{\mu}$

$$a_{\mu}^{\rm EX} = 116~592~091 \pm 63~(\times 10^{-11})$$
 BNL-E821 $a_{\mu}^{\rm TH} = 116~591~809 \pm 66~(\times 10^{-11})$ [Jegerlehner,Nyffeler]

interesting since can be "easily" explained with BSM

TH challenges: Hadronic (N)NLO

be diagrams with hadronic vacuum polarization insertions: now known up to $\mathcal{O}(\alpha^4)$

[Kurz,Marquard et al. '14]

[for more details: M. Passera talk at LFC15, Sep '15]

▶ long standing 3σ discrepancy for $(g-2)_{\mu}$

$$a_{\mu}^{\rm EX} = 116~592~091 \pm 63~(\times 10^{-11})$$
 BNL-E821 $a_{\mu}^{\rm TH} = 116~591~809 \pm 66~(\times 10^{-11})$ [Jegerlehner,Nyffeler]

▶ interesting since can be "easily" explained with BSM

TH challenges: Hadronic (N)NLO

be diagrams with hadronic vacuum polarization insertions: now known up to $\mathcal{O}(\alpha^4)$

[Kurz,Marguard et al. '14]

Hadronic ligh-by-light (H-lbl): relies on theory ...and it had a troubled life!

muonic q-2

[for more details: M. Passera talk at LFC15, Sep '15]

▶ long standing 3σ discrepancy for $(g-2)_{\mu}$

$$a_{\mu}^{\rm EX} = 116~592~091 \pm 63~(\times 10^{-11})$$
 BNL-E821 $a_{\mu}^{\rm TH} = 116~591~809 \pm 66~(\times 10^{-11})$ [Jegerlehner,Nyffeler]

interesting since can be "easily" explained with BSM

TH challenges: Hadronic LO (vacuum polarization) / Hadronic (N)NLO

- today: TH error about the same as EXP
- last couple of years:
 - . HLO: extract $a_{\mu}^{\rm HLO}$ from small-angle Bhabha scattering <code>[C-Calame,Passera et al. '15]</code>
 - . H-lbl from lattice [Blum et al. '15] and dispersive approach [Colangelo et al. '14]
- "E989" (FNAL) and J-PARC target to achieve $\delta a_{\mu}^{\rm EX} \simeq 15~(\times 10^{-11})$

⇒ theoretically very challenging

the QCD sector

1. "large p_T ": later in the talk

the QCD sector

- 1. "large p_T ": later in the talk
- 2. "medium/low p_T " / heavy-ions / high density: lots of interesting developments

the QCD sector

- 1. "large p_T ": later in the talk
- 2. "medium/low p_T " / heavy-ions / high density: lots of interesting developments
- $ightharpoonup \alpha_{\rm S}$ measurement (important per se + implication for all LHC phenomenology)
 - from pion decay constant

[Kneur,Neveu '15]

high-energy scattering and saturation of PDFs

 $[\rightarrow$ talk by S. Munier]

- heavy ions
- partonic distribution functions:
 - integrated PDFs (unpolarized partons / unpolarized hadrons)
 - . fundamental for all LHC Pheno (enter everywhere)
 - . now up to NNLO + more and more consistent
 - . MSTW/MMHT, CT(EQ), NNPDF,...

[PDF4LHC WG]

- polarised distributions (proton spin, unpolarised partons)
- other degrees of freedom can be retained:
 - . GPDs

 \rightarrow talk by R. Boussarie

- . TMDs
- nuclear PDFs

TMD at the LHC

- polarized gluons in upolarized protons
 - perturbatively (g o gg)
 - potentially also intrinsic non-perturbative component
- can be described by TMD PDFs

TMD at the LHC

- polarized gluons in upolarized protons
 - perturbatively $(g \rightarrow gg)$
 - potentially also intrinsic non-perturbative component
- can be described by TMD PDFs

$$\Phi_g^{\alpha\beta}(x, k_T; P) \simeq \left\{ + g_T^{\alpha\beta} f_1^g(x, k_T^2) - \left(\frac{k_T^{\alpha} k_T^{\beta}}{M^2} + g_T^{\alpha\beta} \frac{|\vec{k}_T|^2}{2M^2} \right) h_1^{\perp g}(x, k_T^2) \right\}$$

 \leftarrow related to usual PDF

 \leftarrow essentially unknown

lacksquare second term: linearly polarized g (and helicity flipping)

TMD at the LHC

- polarized gluons in upolarized protons
 - perturbatively $(g \rightarrow gg)$
 - potentially also intrinsic non-perturbative component
- can be described by TMD PDFs

$$\Phi_g^{\alpha\beta}(x, k_T; P) \simeq \left\{ + g_T^{\alpha\beta} f_1^g(x, k_T^2) - \left(\frac{k_T^{\alpha} k_T^{\beta}}{M^2} + g_T^{\alpha\beta} \frac{|\vec{k}_T|^2}{2M^2} \right) h_1^{\perp g}(x, k_T^2) \right\}$$

 \leftarrow related to usual PDF

 $\leftarrow \text{essentially unknown}$

lacktriangledown second term: linearly polarized g (and helicity flipping)

- lacktriangle very little is known about f_1^g and $h_1^{\perp g}$, especially at small p_T
- typically: f_1^g gaussian ; model independent bound on $h_1^{\perp g}$: $|h_1^{\perp g}| \leq (2M^2/k_T^2)f_1^g$
- by measuring them, distinguish among different underlying models!

doable also at the LHC!

TMD at the LHC from quarkonium production

 f_1^g and $h_1^{\perp g}$ can be probed by measuring $pp o \mathcal{Q}[Qar{Q}] + X$

 $lackbox{2} \rightarrow 1$: difficult at the LHC, (final state) mostly lost down the beam pipe

TMD at the LHC from quarkonium production

 f_1^g and $h_1^{\perp g}$ can be probed by measuring $pp o \mathcal{Q}[Qar{Q}]+X$

- ightharpoonup 2 ightharpoonup 1: difficult at the LHC, (final state) mostly lost down the beam pipe
- [**X**]

▶ use quarkonium Q and isolated photon, almost back to back

[den Dunnen,Lansberg,Pisano,Schlegel '14]

- only transverse momentum of $(Q + \gamma)$ system need be small
- ▶ best onium: Υ (gg-fusion + CS dominated)

$$\Upsilon = b\bar{b}[^3S_1]$$

$$\frac{d\sigma}{dQdYd^2q_Td\Omega} \propto A\left(\mathbf{f_1^g} \otimes \mathbf{f_1^g}\right) + B\left(f_1^g \otimes h_1^{\perp g}\right) \cos(2\phi) + C\left(h_1^{\perp g} \otimes h_1^{\perp g}\right) \cos(4\phi)$$

disentangle contributions:

$$S_{q_T}^{(n)} \equiv \frac{\int\!\!\mathrm{d}\phi\cos(n\,\phi)\,\frac{\mathrm{d}\sigma}{\mathrm{d}Q\mathrm{d}Y\mathrm{d}^2\boldsymbol{q}_T\mathrm{d}\Omega}}{\int\!\!\mathrm{d}\boldsymbol{q}_T^2\int\!\!\mathrm{d}\phi\,\frac{\mathrm{d}\sigma}{\mathrm{d}Q\mathrm{d}Y\mathrm{d}^2\boldsymbol{q}_T\mathrm{d}\Omega}}$$

TMD at the LHC from quarkonium production

 f_1^g and $h_1^{\perp g}$ can be probed by measuring $pp o \mathcal{Q}[Q\bar{Q}] + X$

- ightharpoonup 2 ightharpoonup 1: difficult at the LHC, (final state) mostly lost down the beam pipe
- [**X**]

ightharpoonup use quarkonium $\mathcal Q$ and isolated photon, almost back to back

[den Dunnen,Lansberg,Pisano,Schlegel '14]

- only transverse momentum of $(Q + \gamma)$ system need be small
- best onium: $\Upsilon (gg\text{-fusion} + \text{CS dominated})$ $\Upsilon = b\bar{b}[^3S_1]$ $\frac{d\sigma}{dOdYd^2g_Td\Omega} \propto A (f_1^g \otimes f_1^g) + B (\mathbf{f_1^g} \otimes \mathbf{h_1^{\perp g}}) \cos(2\phi) + C (h_1^{\perp g} \otimes h_1^{\perp g}) \cos(4\phi)$
- disentangle contributions:

$$\mathcal{S}_{q_T}^{(n)} \equiv \frac{\int\!\!\mathrm{d}\phi \cos(n\,\phi)\,\frac{\mathrm{d}\sigma}{\mathrm{d}Q\mathrm{d}Y\mathrm{d}^2\boldsymbol{q}_T\mathrm{d}\Omega}}{\int\!\!\mathrm{d}\boldsymbol{q}_T^2\int\!\!\mathrm{d}\phi\,\frac{\mathrm{d}\sigma}{\mathrm{d}Q\mathrm{d}Y\mathrm{d}^2\boldsymbol{q}_T\mathrm{d}\Omega}}$$

LHC is a discovery machine

 optimize as much as possible our knowledge of the SM to make the most out of this experiment (particularly so if no BSM smoking-gun discovery)

LHC is a discovery machine

- optimize as much as possible our knowledge of the SM to make the most out of this experiment (particularly so if no BSM smoking-gun discovery)
 - detect small deviations from SM backgrounds

LHC is a discovery machine

 optimize as much as possible our knowledge of the SM to make the most out of this experiment (particularly so if no BSM smoking-gun discovery)

- accurate measurement of Higgs couplings
- . extraction of SM parameters

LHC is a discovery machine

 optimize as much as possible our knowledge of the SM to make the most out of this experiment (particularly so if no BSM smoking-gun discovery)

- . accurate measurement of Higgs couplings
- . extraction of SM parameters

important also in presence of new discovery

the Higgs cross section

- ▶ to measure Higgs properties, need to know Higgs production cross section
 - gg o H is the dominant production mechanism at the LHC
- ▶ known at NLO [Dawson; Djouadi et al.] and NNLO [Harlander,Kilgore; Anastasiou,Melnikov; Ravindran et al.]

- perturbative series: converges very slowly
- large perturbative uncertainties (estimated by scale variation)

▶ the $gg \rightarrow H$ cross section is now know at N3LO!

[Anastasiou, Duhr, Dulat, Herzog, Mistlberger (+Furlan, Gehrmann) '14-'15]

[Anastasiou,Duhr,Dulat,Herzog,Mistlberger (+Furlan,Gehrmann) '14-'15]

from C. Duhr talk at Higgs Hunting '15

[Anastasiou,Duhr,Dulat,Herzog,Mistlberger (+Furlan,Gehrmann) '14-'15]

Double real

Triple rea

from C. Duhr talk at Higgs Hunting '15

[Anastasiou, Duhr, Dulat, Herzog, Mistlberger (+Furlan, Gehrmann) '14-'15]

N3LO result: exact soft-virtual + (so far) expansion around threshold [$N \simeq 30$]

$$\frac{\hat{\sigma}_{ij}(z)}{z} = \hat{\sigma}^{\rm SV} \delta_{ig} \delta_{jg} + \sum_{N=0}^{\infty} \hat{\sigma}_{ij}^{(N)} (1-z)^N \quad \text{where} \quad z = m_H^2/\hat{s}$$

[Anastasiou, Duhr, Dulat, Herzog, Mistlberger (+Furlan, Gehrmann) '14-'15]

- ► N3LO result: perturbative uncertainties drastically reduced [±2 %]
- $\begin{array}{l} {\color{red} \blacktriangleright \ \ consider \ residual \ effects:} \\ (1/m_t) \ , \ threshold \ resummation \ , \\ {\color{red} missing \ N3LO \ PDFs} \ , \ PDFs+\alpha_{\rm S} \ , \\ {\color{red} EW \ effects...} \end{array}$
- $\begin{array}{ll} \hline \textbf{preliminary results:} \\ [+4.3\%, -6.5\%] & [\text{TH}] \\ [3.15\%] & [\text{PDFs} + \alpha_{\mathrm{S}}] \\ [\text{A. Lazopoulos,HXSWG Jan '16}] \end{array}$

[Anastasiou, Duhr, Dulat, Herzog, Mistlberger (+Furlan, Gehrmann) '14-'15]

- N3LO result: perturbative uncertainties drastically reduced [±2 %]
- $\begin{array}{lll} & \textbf{preliminary results:} \\ & [+4.3\%, -6.5\%] & & [\text{TH}] \\ & [3.15\%] & & [\text{PDFs} + \alpha_{\text{S}}] \\ & [\text{A. Lazopoulos,HXSWG Jan '16}] \end{array}$

- $e^+e^- \rightarrow t\bar{t}$: crucial to measure m_t ultra precisely
- ▶ N³LO in threshold region + non-relativistic resummation

[Beneke et al. '15]

- differential distributions essential to compare EX (after cuts) and TH
- ▶ last 3 years: huge progress in computing $2 \rightarrow 2$ LHC processes at NNLO in QCD

- differential distributions essential to compare EX (after cuts) and TH
- ▶ last 3 years: huge progress in computing $2 \rightarrow 2$ LHC processes at NNLO in QCD

matrix elements

- 2-loops $2 \to 2$ amplitudes \sim known for years

subtraction scheme

- $\mathcal{O}(\alpha_s^2)$ matrix-elements live in different phase spaces
- numerical algorithm to combine them: cancellation of IR divergences for a generic observable

- differential distributions essential to compare EX (after cuts) and TH
- ▶ last 3 years: huge progress in computing $2 \rightarrow 2$ LHC processes at NNLO in QCD

matrix elements

- 2-loops $2 \to 2$ amplitudes \sim known for years

. q_T -subtraction [Catani,Grazzini '07]

. sector-improved residue subtraction

[Czakon '10, Boughezal et al. '11]

. antenna subtraction [Gehrmann et al.]

. colorful NNLO [Somogy et al.]

N-jettiness subtraction

[Boughezal et al., Gaunt et al. '15]

. "projection to Born" [Cacciari et al. '15]

subtraction scheme

- $\mathcal{O}(\alpha_s^2)$ matrix-elements live in different phase spaces
- numerical algorithm to combine them: cancellation of IR divergences for a generic observable

- differential distributions essential to compare EX (after cuts) and TH
- ▶ last 3 years: huge progress in computing $2 \rightarrow 2$ LHC processes at NNLO in QCD

matrix elements

- 2-loops $2 \to 2$ amplitudes \sim known for years

 $^{\bowtie}$ first partial results for 2-loops $2 \rightarrow 3$

. gg o ggg, planar, all + helicities

[Badger et al. '13-'15, Gehrmann, Henn et al. '15]

subtraction scheme

- $\mathcal{O}(\alpha_s^2)$ matrix-elements live in different phase spaces
- numerical algorithm to combine them: cancellation of IR divergences for a generic observable

. q_T -subtraction [Catani,Grazzini '07]

. sector-improved residue subtraction

. antenna subtraction [Gehrmann et al.]

. colorful NNLO [Somogy et al.]

. N-jettiness subtraction

[Boughezal et al., Gaunt et al. '15]

[Czakon '10, Boughezal et al. '11]

. "projection to Born" [Cacciari et al. '15]

- good perturbative convergence
- K-factors are non flat

- NNLO fully inclusive
 - . extremely stable under scale variation (1-2%)
- NNLO fully differential, VBF cuts
 - . corrections are up to 10-12%!

fully differential NNLO

. and others: MCFM, RECOLA, ROCKET, ...

- all high-multiplicity processes relevant at the LHC are known at NLO QCD!
 new ideas (unitarity, integrand reduction) + automation
- often computations done linking together 1-loop codes with tree-level/MC program [BLHA]

```
. BLACKHAT: W + 5 jets [+Sherpa] [Bern,Dixon et al. '13] . GOSAM: H + 3 jets [+MadGraph4/Sherpa] [Greiner et al. '13-'15] . HELAC-NLO: W^+W^-b\bar{b} + 1 jet [Bevilacqua et al. '15] . MADLOOP: self-contained within MadGraph5-aMC@NLO [Alwall,Frederix et al. '14] . NJET: \gamma\gamma + 3 jets [+Sherpa] [Badger et al. '15] . OPENLOOPS: V + 2 jets QCD+EW [+Sherpa/Munich] [Kallweit,Lindert et al. '15]
```

13/16

- all high-multiplicity processes relevant at the LHC are known at NLO QCD!
 new ideas (unitarity, integrand reduction) + automation
- often computations done linking together 1-loop codes with tree-level/MC program [BLHA]

```
. BLACKHAT: W + 5 jets [+Sherpa] [Bern,Dixon et al. '13] . GOSAM: H + 3 jets [+MadGraph4/Sherpa] [Greiner et al. '13-'15] . HELAC-NLO: W^+W^-b\bar{b} + 1 jet [Bevilacqua et al. '15] . MADLOOP: self-contained within MadGraph5_aMC@NLO [Alwall,Frederix et al. '14] . NJET: \gamma\gamma + 3 jets [+Sherpa] [Badger et al. '15] . OPENLOOPS: V + 2 jets QCD+EW [+Sherpa/Munich] [Kallweit,Lindert et al. '15] . and others: MCFM, RECOLA, ROCKET, ...
```

focus is shifting toward NLO EW corrections

- all high-multiplicity processes relevant at the LHC are known at NLO QCD!
 new ideas (unitarity, integrand reduction) + automation
- often computations done linking together 1-loop codes with tree-level/MC program [BLHA]

```
. BLACKHAT: W + 5 jets [+Sherpa] [Bern,Dixon et al. '13] . GOSAM: H + 3 jets [+MadGraph4/Sherpa] [Greiner et al. '13-'15] . HELAC-NLO: W^+W^-b\bar{b} + 1 jet [Bevilacqua et al. '15] . MADLOOP: self-contained within MadGraph5_aMC@NLO [Alwall,Frederix et al. '14] . NJET: \gamma\gamma + 3 jets [+Sherpa] [Badger et al. '15] . OPENLOOPS: V + 2 jets QCD+EW [+Sherpa/Munich] [Kallweit,Lindert et al. '15] . and others: MCFM, RECOLA, ROCKET, ...
```

focus is shifting toward NLO EW corrections

 $[\rightarrow$ talk by H-S. Shao]

- all high multiplicity processes relevant at the LHC are known at MLO OCDI
- NLO+PS: by using the so-called MC@NLO and POWHEG methods, NLO QCD results can be matched to Parton Showers (Pythia8, Herwig7, Sherpa)
 - . improved description of phase-space regions where large soft/collinear logarithms arise
 - . available to a wide EXP community
- . ΠΕΙΑΟ-ΙΝΙΟ. W W 00 + 1 Jet
 . MADLOOP: self-contained within MadGraph5_aMC@NLO
 [Alwall,Frederix et al. '14]
 . NJET: γγ + 3 jets
 [+Sherpa] [Badger et al. '15]
- . OFENEOUPS. V + 2 Jets QOD [TSHEFPA/MULLCH] [KAINWHI,LINGHI et al. 1
- . and others: MCFM, RECOLA, ROCKET, .
- focus is shifting toward NLO EW corrections

- NLO+PS: by using the so-called MC@NLO and POWHEG methods, NLO QCD results can be matched to Parton Showers (Pythia8, Herwig7, Sherpa)
 - improved description of phase-space regions where large soft/collinear logarithms arise
 - . available to a wide EXP community

fully-consistent <u>NLO+PS simulation of WWbb</u>, with exact decays at NLO and offshellness effects

extract m_t looking into the kinematics of visible particles from top-decay

- describe simultaneously (and at NLO+PS) $pp \rightarrow X + 0, 1, 2, ...$ jets
- important for
 - . BSM searches
 - . match NNLO with parton showers
- requires detailed understanding of logarithmic accuracy
- very active field! MEPS@NLO, FxFx, UNLOPS, Geneva, POWHEG+MiNLO

 fully-consistent NLO+PS simulation of WWbb, with exact decays at NLO and offshellness effects

extract m_t looking into the kinematics of visible particles from top-decay

figure from R. Franceschini

- b describe simultaneously (and at NLO+PS) $pp \rightarrow X+0,1,2,...$ jets
- important for
 - . BSM searches
 - . match NNLO with parton showers
- requires detailed understanding of logarithmic accuracy
- very active field! MEPS@NLO, FxFx, UNLOPS, Geneva, POWHEG+MiNLO

 fully-consistent <u>NLO+PS simulation of WWbb</u>, with exact decays at NLO and offshellness effects

- ightharpoonup extract m_t looking into the kinematics of visible particles from top-decay
- first approximate results (with POWHEG) obtained in [Campbell, Ellis, Nason, ER '14]
- general solution

 $[\rightarrow$ talk by T. Jezo]

- b describe simultaneously (and at NLO+PS) $pp \rightarrow X + 0, 1, 2, ...$ jets
- important for
 - . BSM searches
 - . match NNLO with parton showers
- requires detailed understanding of logarithmic accuracy
- very active field! MEPS@NLO, FxFx, UNLOPS, Geneva, POWHEG+MiNLO

 fully-consistent NLO+PS simulation of WWbb, with exact decays at NLO and offshellness effects

- ightharpoonup extract m_t looking into the kinematics o visible particles from top-decay
- ▶ first approximate results (with POWHEG) obtained in [Campbell.Ellis.Nason.ER '141
 - general solution
- [o talk by T. Jezo]

- b describe simultaneously (and at NLO+PS) $pp \rightarrow X + 0, 1, 2, ...$ jets
- important for
 - . BSM searches
 - . match NNLO with parton showers
- requires detailed understanding of logarithmic accuracy
- very active field! MEPS@NLO, FxFx, UNLOPS, Geneva, POWHEG+MiNLO

NNLO+PS [with POWHEG+Minlo]

NNLO+PS [with POWHEG+Minlo]

(a) 1 and 2 jets: POWHEG H+1j

$$\bar{B}_{\rm NLO} = \alpha_{\rm S}^3(\mu_R) \Big[B + \alpha_{\rm S} V(\mu_R) + \alpha_{\rm S} \int d\Phi_{\rm r} R \Big]$$

NNLO+PS [with POWHEG+MINLO]

(b) integrate down to $q_T = 0$ with MiNLO

[H-HJ NLO+PS merging]

$$\bar{B}_{\mathrm{MiNLO}} = \alpha_{\mathrm{S}}^{2}(m_{h})\alpha_{\mathrm{S}}(q_{T})\Delta_{g}^{2}(q_{T},m_{h}) \Big[B \left(1 - 2\Delta_{g}^{(1)}(q_{T},m_{h}) \right) + \alpha_{\mathrm{S}} V(\bar{\mu}_{R}) + \alpha_{\mathrm{S}} \int d\Phi_{\mathrm{r}} R \Big]$$
[Hamilton et al. '12]

(a) 1 and 2 jets: POWHEG H+1j

$$\bar{B}_{\mathrm{NLO}} = \alpha_{\mathrm{S}}^{3}(\mu_{R}) \left[B + \alpha_{\mathrm{S}} V(\mu_{R}) + \alpha_{\mathrm{S}} \int d\Phi_{\mathrm{r}} R \right]$$

NNLO+PS [with POWHEG+MINLO]

(c) 2 loops missing: from exact fixed-order NNLO

$$W(y) = \frac{d\sigma(y)_{\text{NNLO}}}{d\sigma(y)_{\text{MINLO}}}$$

[NNLO+PS]

[Hamilton,Nason,ER,Zanderighi '13]

(b) integrate down to $q_T = 0$ with MiNLO

[H-HJ NLO+PS merging]

$$\bar{B}_{\mathrm{MiNLO}} = \alpha_{\mathrm{S}}^2(m_h)\alpha_{\mathrm{S}}(q_T)\Delta_g^2(q_T,m_h) \Big[B\left(1 - 2\Delta_g^{(1)}(q_T,m_h)\right) + \alpha_{\mathrm{S}}\,V(\bar{\mu}_{R}) + \alpha_{\mathrm{S}}\int d\Phi_{\mathrm{r}}R \Big]$$
 [Hamilton et al. '12]

(a) 1 and 2 jets: POWHEG H+1j

$$\bar{B}_{\mathrm{NLO}} = \alpha_{\mathrm{S}}^{3}(\mu_{R}) \Big[B + \alpha_{\mathrm{S}} V(\mu_{R}) + \alpha_{\mathrm{S}} \int d\Phi_{\mathrm{r}} R \Big]$$

NNLO+PS [with POWHEG+Minlo]

- ▶ applied also to Drell-Yan [Karlberg,ER,Zanderighi '14]
- ▶ other methods: UNNLOPS [Hoeche,Li,Prestel, '14] , Geneva [Alioli,Bauer et al.,'15]
- (a) 1 and 2 jets: POWHEG H+1j

The SM is now complete, but:

- . there are still many outstanding problems:
 - interesting in their own
 - relevant for direct & indirect searches for new Physics

The SM is now complete, but:

- . there are still many outstanding problems:
 - interesting in their own
 - relevant for direct & indirect searches for new Physics
- performing state-of-the-art computations/simulations relevant for LHC phenomenology requires conceptual breakthroughs:
 - fixed-order results ↔ amplitudes
 - Monte Carlo tools \leftrightarrow interplay of different regimes in pQCD

The SM is now complete, but:

- . there are still many outstanding problems:
 - interesting in their own
 - relevant for direct & indirect searches for new Physics
- performing state-of-the-art computations/simulations relevant for LHC phenomenology requires conceptual breakthroughs:
 - fixed-order results ↔ amplitudes
 - Monte Carlo tools \leftrightarrow interplay of different regimes in pQCD
- . without them, it's unlikely that we would be where we are
 - all backgrounds and many signals known at <u>NLO+PS</u>
 - several $2 \to 2$ NNLO fully differential computations performed, more to come
 - NNLO+PS for simple processes achieved
 - $gg \rightarrow \text{Higgs cross section known at } \frac{N^3LO}{}$
 - resummation: jet-vetoes, jet-shapes, jet substructure

 $[\rightarrow talk by F. Dreyer]$

The SM is now complete, but:

- . there are still many outstanding problems
 - interesting in their own
 - relevant for direct & indirect searches for new Physics

legitimate to expect that few percent deviations from the SM will be accessible, without being limited by theory uncertainties.

IIXEU-UIUEI TESUILS ↔ aIIIDIILUUES

- Monte Carlo tools ↔ interplay of different regimes in pQCD
- . without them, it's unlikely that we would be where we are
 - all backgrounds and many signals known at NLO+PS
 - several 2 o 2 NNLO fully differential computations performed, more to come
 - NNLO+PS for simple processes achieved
 - $gg \rightarrow \text{Higgs cross section known at } \underline{\mathsf{N}^3\mathsf{LO}}$
 - resummation: jet-vetoes, jet-shapes, jet substructure $[\rightarrow talk]$

- legitimate to expect that few percent deviations from the SM will be accessible, without being limited by theory uncertainties.
 - HXEU-UTUEL LESUILS ↔ AHIDHLUUES
 - - ...but of course, I hope that the 750 GeV resonance is real...

The SM is now complete, but:

- . there are still many outstanding problems
 - interesting in their own
 - relevant for direct & indirect searches for new Physics

legitimate to expect that few percent deviations from the SM will be accessible, without being limited by theory uncertainties.

IIXEU-UIUEI TESUILS ↔ aIIIDIILUUES

- Monte Carlo tools ↔ interplay of different regimes in pQCD
- . without them, it's unlikely that we would be where we are
 - all backgrounds and many signals known at NLO+PS
 - several $2 \rightarrow 2$ NNLO fully differential computations performed, more to come
 - NNLO+PS for simple processes achieved
 - $gg \rightarrow \text{Higgs cross section known at } N^3LO$
 - <u>resummation</u>: jet-vetoes, jet-shapes, jet substructure

[o talk by F. Dreyer]