Precision top quark physics and beyond the Standard Model

Roberto Franceschini (CERN) Rencontre de Physique des Particules LAPTh Annecy, January 26th 2016

two most important slides from LHC so far

two (quite different) discoveries

two (quite different) discoveries

"easy" new physics ruled out at Run1 (?)

Run2 ~ Subtle New Physics

EPS 2011

Jamboree 2011-15

BSM means operating in this moving field

BSM means operating in this moving field

Outline

• Precision top observables and subtle new physics signals

Precision Observable Programme on the TOP

Outline

• Precision top observables and subtle new physics signals

Precision Observable Programme on the TOP

Mtop related observables

measurement at $\leq 0.5\%! \Rightarrow precision QCD$

Distributions used for top mass should be well under control

Many observables have been proposed (link)

Status

measurement at ≤0.5%! ⇒ precision QCD

• precision is systematics limited (JES, ..., hadronization)

The strength of the future LHC top mass measurement will build on the **diversity of methods** ⇒ not very useful to talk about "*single best measurement*"

CMS PAS TOP-15-002

$m_{\rm t} = 172.29 \pm 1.17 \, (\text{stat.}) \pm 2.66 \, (\text{syst.}) \, \text{GeV}$

leading uncertainty from theory can be reduced

pT(top) reweighting smaller than other methods (Lxy, pTl ...)

NLO E*(m_{top})

Agashe, RF, Kim, Schulze - in preparation

NLO sensitive to the scale choice: ±1 GeV on mtop

Mtop related observables

Distributions used for top mass should be well under control

Many observables have been proposed (link)

Suitable to look for subtle effects

my guess for $\tilde{t} \rightarrow t\chi^0$

- max(mbl,min) (truly?) unaffected
- mT2 larger end-point
- Eb affected by top polarization (maybe small)
- pTl, Lxy, s(ttj), affected by top boost (maybe small)

To know the answer we need to see signal injections

New physics effect on $m_{b\ell}$ and E_b

Eb and mbe behave differently

$$t \rightarrow bW \rightarrow b\ell v \longrightarrow \tilde{t} \rightarrow b \chi^{+} \rightarrow b\ell v \chi^{0}$$

$$m_{bc}^{mox} = \left(\frac{(m_{t}^{2} - m_{\chi^{+}}^{2})(m_{\chi^{+}}^{2} - m_{\chi^{0}}^{2})}{m_{\chi}} \right)$$

$$m_{bc}^{m_{b}=0} = \sqrt{m_{\chi}^{2} - m_{\chi}^{2}}$$

$$m_{t}^{2} - m_{\chi^{+}}^{2}$$

$$E_b^* = \frac{1}{2m_f}$$

★ Harder **E**_b, softer **m**_b*e*

New physics effect on $m_{b\ell}$ and E_b

🖈 harder Еь, softer **m**ье

★ softer **E**_b, softer **m**_b*e*

New physics effect on mbl and Eb

A first look at scale uncertainties

A first look at scale uncertainties

A first look at scale uncertainties

mbe at NLO

Many measurements

Use the correlated effect in many observables that is expected from a new physics source

Many measurements

several different mass-sensitive observables can be used and give independently disagreement from the SM: **QCD or new physics effect?**

Use the correlated effect in many observables that is expected from a new physics source

Subtleties of the subtle effects

∆mtop≤300 MeV despite 5% deviations in the tails

- despite "large" difference in the tails, mtop is unaffected
- good for m_{top}
- would be terrible if this was the effect of new physics sough for in m_{top}

search of new physics goes beyond, although get started from, mass measurement

... a delicate task

Subtleties of the subtle effects

∆m_{top}≤1 GeV and large deviations in the tails

- "large" difference in the tails, m_{top} is affected
- not too bad for mtop (1407.2763)
- would be terrible if this was the effect of new physics sough for in these tails

Subtleties of the subtle effects

beyond RPC SUSY

• generic "top-like" new physics

• RPV stop

• RPV stau

Ferretti, RF, Petersson, Torre, in progress

stops from top in RPV SUSY

Ferretti, RF, Petersson, Torre, in progress

Ferretti, RF, Petersson, Torre, in progress

Ferretti, RF, Petersson, Torre, in progress

would appear in top properties measurements

CMS "BR" measurement 1506.05074 CMS "Vtb" measurement 1404.2292

Ferretti, RF, Petersson, Torre, in progress

stops from top in RPV SUSY + more exotic models

hadronic stops in RPV SUSY

Top as a trigger Ferretti, RF, Petersson, Torre, in progress

stops from top in RPV SUSY + more exotic models

hadronic stops in RPV SUSY

Top as a trigger Ferretti. RF. Petersson. Torre. in progress

stops from top in RPV SUSY + more exotic models

hadronic stops in RPV SUSY

would appear in top properties measurements

Top as a trigger Ferretti, RF. Petersson, Torre, in progress

stops from top in RPV SUSY + more exotic models

hadronic stops in RPV SUSY

would appear in top properties measurements

CMS "BR" measurement 1506.05074 CMS "Vtb" measurement 1404.2292

Precision jet rates?

Status: March 2015 $\sigma = 712.3 \pm 1.9 + 79.9 - 76.0$ nb (data) Incl. jet **R**=0.6, |**y**| < 3.0 $\sigma = 187.0 \pm 0.9 + 15.1 - 15.0$ nb (data) $-|y| < 0.5, 0.1 < p_T < 2$ TeV $\sigma = 172.7 \pm 0.9 + 15.9 - 14.3$ nb (data) -0.5 < |y| < 1.0, 0.1 < pT < 2 TeV $\sigma = 139.8 \pm 0.9 + 16.5 - 16.2$ nb (data) $-1.0 < |y| < 1.5, 0.1 < p_T < 2$ TeV $\sigma = 105.5 \pm 0.7 + 16.0 - 15.2$ nb (data) -1.5 < |y| < 2.0, 0.1 < p_T < 2 TeV 0 $\sigma = 69.7 \pm 0.6 + 13.5 - 12.7$ nb (data) $-2.0 < |y| < 2.5, 0.1 < p_T < 0.9$ TeV O $\sigma = 37.5 \pm 0.4 + 9.4 - 8.4$ nb (data) 0 -2.5 < |y| < 3.0, 0.1 < p_T < 0.5 TeV $\sigma = 563.9 \pm 1.5 + 55.4 - 51.4$ nb (data) Incl. jet R=0.4, |y| < 3.00 $\sigma = 145.1 \pm 0.8 + 10.7 - 10.6$ nb (data) - |y| < 0.5, 0.1 < p_T < 2 TeV LHC pp $\sqrt{s} = 7$ TeV $\sigma = 136.9 \pm 0.8 + 10.9 - 10.5$ nb (data) $-0.5 < |y| < 1.0, 0.1 < p_T < 2$ TeV Theory NLOJet++, CT10 $\sigma = 112.2 \pm 0.7 + 11.0 - 10.2$ nb (data) $-1.0 < |y| < 1.5, 0.1 < p_T < 2$ TeV 0 Observed 4.5 fb⁻¹ $\sigma = 83.5 \pm 0.6 + 11.1 - 9.7$ nb (data) $-1.5 < |y| < 2.0, 0.1 < p_T < 2$ TeV stat stat+syst $\sigma = 57.1 \pm 0.4 + 10.4 - 9.1$ nb (data) $-2.0 < |y| < 2.5, 0.1 < p_T < 0.9$ TeV Ο $\sigma = 29.13 \pm 0.31 + 7.5 - 6.38$ nb (data) $-2.5 < |y| < 3.0, 0.1 < p_T < 0.5$ TeV Dijet R=0.6, |y| < 3.0, $y^* < 3.0$ $\sigma = 119.0 \pm 0.4 + 10.9 - 10.3$ nb (data) Incl. jet: arXiv:1410.8857 [hep-ex] $-y^* < 0.5, 0.3 < m_{ii} < 4.3$ TeV $\sigma = 48.21 \pm 0.23 + 4.03 - 3.8$ nb (data) Dijet: JHEP 05, 059 (2014) $\sigma = 51.47 \pm 0.32 + 4.76 - 4.44$ nb (data) $-0.5 < y^* < 1.0, 0.3 < m_{ii} < 4.3$ TeV $\sigma = 13.82 \pm 0.11 + 1.44 - 1.42$ nb (data) $-1.0 < y^* < 1.5, 0.5 < m_{ii} < 4.6$ TeV $\sigma = 4.93 \pm 0.06 + 0.69 - 0.65$ nb (data) $-1.5 < y^* < 2.0, 0.8 < m_{ii} < 4.6$ TeV Ο $\sigma = 505.0 \pm 15.1 + 102.4 - 92.4 \text{ pb} \text{ (data)}$ $-2.0 < y^* < 2.5, 1.3 < m_{ii} < 5$ TeV $\sigma = 26.9 \pm 4.2 + 7.7 - 6.4 \text{ pb}$ (data) $-2.5 < y^* < 3.0, 2 < m_{ii} < 5$ TeV $\sigma = 86.87 \pm 0.26 + 7.56 - 7.2$ nb (data) Dijet R=0.4, |v| < 3.0, $v^* < 3.0$ 0 $\sigma = 35.47 \pm 0.15 + 2.79 - 2.66$ nb (data) $-y^* < 0.5, 0.3 < m_{ii} < 4.3$ TeV Ο **ATLAS** $\sigma = 37.33 \pm 0.2 + 3.25 - 3.03$ nb (data) Preliminary $-0.5 < y^* < 1.0, 0.3 < m_{ii} < 4.3$ TeV $-1.0 < y^* < 1.5, 0.5 < m_{ii} < 4.6$ TeV $\sigma = 10.12 \pm 0.07 + 1.02 - 1.03$ nb (data) Ο $\sqrt{s} = 7 \text{ TeV}$ Run 1 $\sigma = 3.57 \pm 0.04 + 0.51 - 0.49$ nb (data) $-1.5 < y^* < 2.0, 0.8 < m_{ii} < 4.6$ TeV 0 $\sigma = 371.0 \pm 9.7 + 81.5 - 72.1 \text{ pb} \text{ (data)}$ $-2.0 < y^* < 2.5, 1.3 < m_{ii} < 5$ TeV 0 $\sigma = 16.0 \pm 2.0 + 5.4 - 4.3 \text{ pb} \text{ (data)}$ $-2.5 < y^* < 3.0, 2 < m_{ii} < 5$ TeV 1.2 1.4 0.4 0.6 0.8 1.0 1.6

Inclusive Jet Cross Section Measurements

observed/theory

Conclusions

- Run2: more emphasis on precision in SM and BSM
- <u>Many new observables</u> for precision SM measurements (exciting new results e.g. CMS TOP-PAS-15-002)
- Precision can be turned into an asset to search for BSM!
- Top quark is ideal playground because of the precision QCD effort and motivation for BSM
- Mass-sensitive variables are an "obvious" set of observables to exploit
- Preliminary studies of precision on the shapes started
- Potentially far-reaching approach (RPC, RPV, top-like, ...)
- Jet physics can soon be in the same status

Thank you!

How special is this invariance?

The sensitivity to the **boost distribution** is the key

hadronic stops in RPV SUSY

large QCD cross-section for direct production

hadronic stops in RPV SUSY

large QCD cross-section for direct production

larger QCD background!

Ferretti, RF, Petersson, Torre, in progress

stops from top in RPV SUSY

Ferretti, RF, Petersson, Torre, in progress

Ferretti, RF, Petersson, Torre, in progress

Ferretti, RF, Petersson, Torre, in progress

would appear in top properties measurements

CMS "BR" measurement 1506.05074 CMS "Vtb" measurement 1404.2292

Ferretti, RF, Petersson, Torre, in progress

stops from top in RPV SUSY + more exotic models

hadronic stops in RPV SUSY

Top as a trigger Ferretti, RF, Petersson, Torre, in progress

stops from top in RPV SUSY + more exotic models

hadronic stops in RPV SUSY

Top as a trigger Ferretti. RF. Petersson. Torre. in progress

stops from top in RPV SUSY + more exotic models

hadronic stops in RPV SUSY

would appear in top properties measurements

Top as a trigger Ferretti, RF. Petersson, Torre, in progress

stops from top in RPV SUSY + more exotic models

hadronic stops in RPV SUSY

would appear in top properties measurements

CMS "BR" measurement 1506.05074 CMS "Vtb" measurement 1404.2292

Precision jet rates?

Status: March 2015 $\sigma = 712.3 \pm 1.9 + 79.9 - 76.0$ nb (data) Incl. jet **R**=0.6, |**y**| < 3.0 $\sigma = 187.0 \pm 0.9 + 15.1 - 15.0$ nb (data) $-|y| < 0.5, 0.1 < p_T < 2$ TeV $\sigma = 172.7 \pm 0.9 + 15.9 - 14.3$ nb (data) -0.5 < |y| < 1.0, 0.1 < pT < 2 TeV $\sigma = 139.8 \pm 0.9 + 16.5 - 16.2$ nb (data) $-1.0 < |y| < 1.5, 0.1 < p_T < 2$ TeV $\sigma = 105.5 \pm 0.7 + 16.0 - 15.2$ nb (data) -1.5 < |y| < 2.0, 0.1 < p_T < 2 TeV 0 $\sigma = 69.7 \pm 0.6 + 13.5 - 12.7$ nb (data) $-2.0 < |y| < 2.5, 0.1 < p_T < 0.9$ TeV O $\sigma = 37.5 \pm 0.4 + 9.4 - 8.4$ nb (data) 0 -2.5 < |y| < 3.0, 0.1 < p_T < 0.5 TeV $\sigma = 563.9 \pm 1.5 + 55.4 - 51.4$ nb (data) Incl. jet R=0.4, |y| < 3.00 $\sigma = 145.1 \pm 0.8 + 10.7 - 10.6$ nb (data) - |y| < 0.5, 0.1 < p_T < 2 TeV LHC pp $\sqrt{s} = 7$ TeV $\sigma = 136.9 \pm 0.8 + 10.9 - 10.5$ nb (data) $-0.5 < |y| < 1.0, 0.1 < p_T < 2$ TeV Theory NLOJet++, CT10 $\sigma = 112.2 \pm 0.7 + 11.0 - 10.2$ nb (data) $-1.0 < |y| < 1.5, 0.1 < p_T < 2$ TeV 0 Observed 4.5 fb⁻¹ $\sigma = 83.5 \pm 0.6 + 11.1 - 9.7$ nb (data) $-1.5 < |y| < 2.0, 0.1 < p_T < 2$ TeV stat stat+syst $\sigma = 57.1 \pm 0.4 + 10.4 - 9.1$ nb (data) $-2.0 < |y| < 2.5, 0.1 < p_T < 0.9$ TeV Ο $\sigma = 29.13 \pm 0.31 + 7.5 - 6.38$ nb (data) $-2.5 < |y| < 3.0, 0.1 < p_T < 0.5$ TeV Dijet R=0.6, |y| < 3.0, $y^* < 3.0$ $\sigma = 119.0 \pm 0.4 + 10.9 - 10.3$ nb (data) Incl. jet: arXiv:1410.8857 [hep-ex] $-y^* < 0.5, 0.3 < m_{ii} < 4.3$ TeV $\sigma = 48.21 \pm 0.23 + 4.03 - 3.8$ nb (data) Dijet: JHEP 05, 059 (2014) $\sigma = 51.47 \pm 0.32 + 4.76 - 4.44$ nb (data) $-0.5 < y^* < 1.0, 0.3 < m_{ii} < 4.3$ TeV $\sigma = 13.82 \pm 0.11 + 1.44 - 1.42$ nb (data) $-1.0 < y^* < 1.5, 0.5 < m_{ii} < 4.6$ TeV $\sigma = 4.93 \pm 0.06 + 0.69 - 0.65$ nb (data) $-1.5 < y^* < 2.0, 0.8 < m_{ii} < 4.6$ TeV Ο $\sigma = 505.0 \pm 15.1 + 102.4 - 92.4 \text{ pb} \text{ (data)}$ $-2.0 < y^* < 2.5, 1.3 < m_{ii} < 5$ TeV $\sigma = 26.9 \pm 4.2 + 7.7 - 6.4 \text{ pb}$ (data) $-2.5 < y^* < 3.0, 2 < m_{ii} < 5$ TeV $\sigma = 86.87 \pm 0.26 + 7.56 - 7.2$ nb (data) Dijet R=0.4, |v| < 3.0, $v^* < 3.0$ 0 $\sigma = 35.47 \pm 0.15 + 2.79 - 2.66$ nb (data) $-y^* < 0.5, 0.3 < m_{ii} < 4.3$ TeV Ο **ATLAS** $\sigma = 37.33 \pm 0.2 + 3.25 - 3.03$ nb (data) Preliminary $-0.5 < y^* < 1.0, 0.3 < m_{ii} < 4.3$ TeV $-1.0 < y^* < 1.5, 0.5 < m_{ii} < 4.6$ TeV $\sigma = 10.12 \pm 0.07 + 1.02 - 1.03$ nb (data) Ο $\sqrt{s} = 7 \text{ TeV}$ Run 1 $\sigma = 3.57 \pm 0.04 + 0.51 - 0.49$ nb (data) $-1.5 < y^* < 2.0, 0.8 < m_{ii} < 4.6$ TeV 0 $\sigma = 371.0 \pm 9.7 + 81.5 - 72.1 \text{ pb} \text{ (data)}$ $-2.0 < y^* < 2.5, 1.3 < m_{ii} < 5$ TeV 0 $\sigma = 16.0 \pm 2.0 + 5.4 - 4.3 \text{ pb} \text{ (data)}$ $-2.5 < y^* < 3.0, 2 < m_{ii} < 5$ TeV 1.2 1.4 0.4 0.6 0.8 1.0 1.6

Inclusive Jet Cross Section Measurements

observed/theory

Limits $g_A = g_S \tan \theta$

$$\Gamma(G' \to jj) = \frac{5\alpha_s}{6} \tan^2\theta \ M_{G'} \left[1 + O\left(\frac{\alpha_s}{\pi}\right)\right] \qquad g_s \tan^2\theta \ M_{G'} \left[1 + O\left(\frac{\alpha_s}{\pi}\right)\right] \qquad g_s$$

 $g_s \tan\theta \,\overline{q}\gamma^{\mu}T^a G_{\mu}^{\prime a}q \quad ,$

Limits $g_A = g_S \tan \theta$

$$\Gamma(G' \to jj) = \frac{5\alpha_s}{6} \tan^2\theta M_{G'} \left[1 + O\left(\frac{\alpha_s}{\pi}\right)\right]$$

$$g_s \tan \theta \, \overline{q} \gamma^\mu T^a G'^a_\mu q \quad ,$$

New light colored states with M. Redi

400

-0.01

-0.02

600

800

1000

1200

Thank you! (again)

A simple mixing model $g_1 g_2$ Q,u,d~(3,1) of SU(3)₁,SU(3)₂ vectorial fermions (maybe stupid?) $g_3 \tan\theta \cdot A\overline{\psi}\gamma\psi$ $g_1/g_2 = \tan\theta$ $1/g_1^2 + 1/g_2^2 = 1/g_3^2$ $\sqrt{(g_1^2 + g_2^2)} = g_3/\sin 2\theta$

 $\Gamma = \alpha_3(\tan\theta)^2 \cdot M \cdot N_{\text{flavor}}/6 \cdot N_X \quad \Lambda = 4\pi \cdot f = 4\pi \cdot m_A/\sqrt{(g_1^2 + g_2^2)} = 4\pi \cdot m_A \cdot \sin 2\theta/g_3$

Each methods based on different <u>assumptions/beliefs</u>

- kinematics of the event (going beyond tī→ bWbW)
- MC *choices* (NLO, scales range & functional form ...

... width treatment, color neutralization, radiation in decays, hadronization)

Ideal situation

Have many inherently different methods

possibly based on different experimental objects/quantities

- deal with reconstructed jets
- only-leptons
- only-tracks

Many measurements

The strength of the future LHC top mass measurement will build on the **diversity of methods** \Rightarrow not very useful to talk about "*single best measurement*"

Many measurements

due to different hypothesis, different mass measurement methods can result in significantly disagreeing measurements: **QCD or new physics effect?**

The strength of the future LHC top mass measurement will build on the **diversity of methods** ⇒ not very useful to talk about "*single best measurement*"

Ideal situation

1310.0799 - Juste, Mantry, Mitov, Penin, Skands, Varnes, Vos, Wimpenny -Determination of the top quark mass circa 2013: methods, subtleties, perspective