NLO CORRECTIONS TO HIGGS TO HIGGS DECAY IN THE SINGLET-EXTENDED SM

Guillaume CHALONS

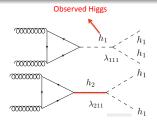
LPSC Grenoble

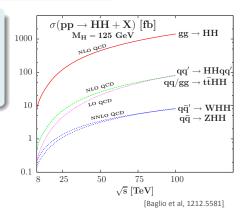
based on F. Bojarski, G.C, D. Lopez-Val, T. Robens, ArXiv: 1511.08120 [hep-ph] recommended for publication in JHEP

WHY SINGLET EXTENSIONS OF THE SM (HIGGS PORTAL)?

 \Longrightarrow Simplest extensions of the \mathcal{SM} \longleftarrow

- Improve SM stability ($\mu_{RG} \gtrsim 10^{11} \text{ GeV}$)
- ► Help account for the baryon asymmetry of the Universe
- ► Provide Dark Matter candidate
- Rich phenomenology with Higgs to Higgs decays

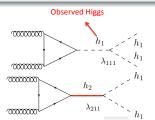


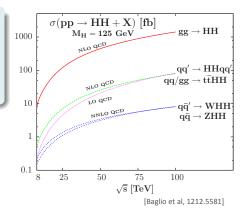


WHY SINGLET EXTENSIONS OF THE SM (HIGGS PORTAL)?

 \Longrightarrow Simplest extensions of the $\mathcal{SM} \Longleftarrow$

- ▶ Improve SM stability ($\mu_{RG} \gtrsim 10^{11} \text{ GeV}$)
- ► Help account for the baryon asymmetry of the Universe
- ► Provide Dark Matter candidate
- Rich phenomenology with Higgs to Higgs decays





LHC run 2 \rightarrow start probing Higgs self-couplings Di-Higgs production can be enhanced due to decay of heavy resonances \Rightarrow opportunity to probe extended Higgs sectors also

- ▶ Add a \mathbb{R} scalar field S, singlet under G_{SM}
- ► Only scalar potential *V* is modified
- $ightharpoonup \mathbb{Z}_2$ symmetry imposed $(S \rightarrow -S)$

- ▶ Add a \mathbb{R} scalar field S, singlet under G_{SM}
- ► Only scalar potential *V* is modified
- ▶ \mathbb{Z}_2 symmetry imposed $(S \rightarrow -S)$

$$\boxed{ \mathcal{V}(\Phi, S) = \mu^2 \, \Phi^\dagger \, \Phi + \lambda_1 \, |\Phi^\dagger \Phi|^2 + \mu_s^2 \, S^2 + \lambda_2 \, S^4 + \lambda_3 \, \Phi^\dagger \, \Phi S^2 } \,$$

$$\Phi = \left(G^+, \frac{\mathbf{v} + \phi_h + iG^0}{\sqrt{2}} \right)^T, S = \frac{\mathbf{v}_s + \phi_s}{\sqrt{2}}$$

Scalar fields both acquire a vev ⇒ no DM

- ▶ Add a \mathbb{R} scalar field S, singlet under G_{SM}
- Only scalar potential V is modified
- ▶ \mathbb{Z}_2 symmetry imposed $(S \rightarrow -S)$

$$\boxed{ \mathcal{V}(\Phi, S) = \mu^2 \, \Phi^\dagger \, \Phi + \lambda_1 \, |\Phi^\dagger \Phi|^2 + \mu_s^2 \, S^2 + \lambda_2 \, S^4 + \lambda_3 \, \Phi^\dagger \, \Phi S^2 } \,$$

$$\Phi = \left(G^+, \frac{v + \phi_h + iG^0}{\sqrt{2}} \right)^T, S = \frac{v_s + \phi_s}{\sqrt{2}}$$

Scalar fields both acquire a vev ⇒ no DM

5 free parameters:

- Potential : $\lambda_1, \lambda_2, \lambda_3, v, v_s$
- Physical: m_h , m_H , $\sin \alpha$, v, $\tan \beta$
- Each SM-like coupling rescaled by $\cos \alpha(h)/\sin \alpha(H)$

Mass spectrum:

$$\begin{pmatrix} h \\ H \end{pmatrix} = \underbrace{\begin{pmatrix} c_{\alpha} & -s_{\alpha} \\ s_{\alpha} & c_{\alpha} \end{pmatrix}}_{U(\alpha)} \begin{pmatrix} \phi_{h} \\ \phi_{s} \end{pmatrix}$$

sin α : mix angle, $\tan \beta = v_s/v$

- ▶ Add a \mathbb{R} scalar field S, singlet under G_{SM}
- Only scalar potential V is modified
- ▶ \mathbb{Z}_2 symmetry imposed $(S \rightarrow -S)$

$$\boxed{ \mathcal{V}(\Phi, S) = \mu^2 \, \Phi^\dagger \, \Phi + \lambda_1 \, |\Phi^\dagger \Phi|^2 + \mu_s^2 \, S^2 + \lambda_2 \, S^4 + \lambda_3 \, \Phi^\dagger \, \Phi S^2 } \, .$$

$$\Phi = \left(G^+, \frac{v + \phi_h + iG^0}{\sqrt{2}} \right)^T, S = \frac{v_s + \phi_s}{\sqrt{2}}$$

Scalar fields **both** acquire a vev \Rightarrow **no DM**

5 free parameters:

- Potential : $\lambda_1, \lambda_2, \lambda_3, v, v_s$
- Physical: m_h , m_H , $\sin \alpha$, ν , $\tan \beta$
- Each SM-like coupling rescaled by $\cos \alpha(h)/\sin \alpha(H)$

Mass spectrum:

$$\begin{pmatrix} h \\ H \end{pmatrix} = \underbrace{\begin{pmatrix} c_{\alpha} & -s_{\alpha} \\ s_{\alpha} & c_{\alpha} \end{pmatrix}}_{U(\alpha)} \begin{pmatrix} \phi_{h} \\ \phi_{s} \end{pmatrix}$$

- $\sin \alpha$: mix angle, $\tan \beta = v_s/v$
- \rightarrow Decay rates \simeq as in \mathcal{SM} , unless $H \rightarrow hh$ open

- xSM will be used as a template model to probe extended Higgs sectors at run II (see LHCXSWG YR4)
- Reach the same accuracy for Higgs lineshapes as in the \mathcal{SM} : Full NLO EW corrections missing

SECTORS

- Fermion → as in the SM
- \square Gauge \rightarrow as in the SM

- xSM will be used as a template model to probe extended Higgs sectors at run II (see LHCXSWG YR4)
- \square Reach the same accuracy for Higgs lineshapes as in the \mathcal{SM} : Full NLO EW corrections missing

SECTORS

- Fermion → as in the SM
- \square Gauge \rightarrow as in the SM
- Higgs

$$\mathcal{L}^{0} = \mathcal{L}(\lambda_{i}, M_{ij}, \phi_{i}) + \delta \mathcal{L}(\lambda_{i}, M_{ij}, \phi_{i}, \delta \lambda_{i}, \delta M_{ij}, \delta Z_{ij}), \quad i = h, H$$

SHIFTS

- $\lambda_i^0 \rightarrow \lambda_i + \delta \lambda_i, v_i^0 \rightarrow v_i + \delta v_i$
- $M_{ii}^{0.2} \rightarrow M_{ii}^2 + \delta M_{ii}^2$
- $T_i^0 \rightarrow T_i + \delta T_i$

ON-SHELL SCHEME

- $ightharpoonup \widetilde{\mathcal{R}e}\hat{\Sigma}_{ii}(M_i^2) = 0 \rightarrow \delta M^2$
- $ightharpoonup \widetilde{\mathcal{R}e}\hat{\Sigma}'_{ii}(M_i^2) = 0 \rightarrow \delta Z_{ii}$
- $ightharpoonup \widetilde{\mathcal{R}e}\hat{\Sigma}_{ii}(M_i^2) = 0 \rightarrow \delta Z_{ii}$
- $\widetilde{\mathcal{R}e}\,\hat{T}_i=0\to\delta T_i$

- xSM will be used as a template model to probe extended Higgs sectors at run II (see LHCXSWG YR4)
- Reach the same accuracy for Higgs lineshapes as in the SM: Full NLO EW corrections missing

SECTORS

- Fermion \rightarrow as in the SM
- \square Gauge \rightarrow as in the SM
- Higgs \rightarrow definition for $\Rightarrow \delta v_s, \delta m_{hH}^2 \Leftarrow$

$$\mathcal{L}^{0} = \mathcal{L}(\lambda_{i}, M_{ij}, \phi_{i}) + \delta \mathcal{L}(\lambda_{i}, M_{ij}, \phi_{i}, \delta \lambda_{i}, \delta M_{ij}, \delta Z_{ij}), \quad i = h, H$$

SHIFTS

- $T_i^0 \rightarrow T_i + \delta T_i$

ON-SHELL SCHEME

- $\widetilde{\mathcal{R}e} \hat{\Sigma}_{ii}(M_i^2) = 0 \rightarrow \delta M^2$
- $\widetilde{\mathcal{R}e} \hat{\Sigma}'_{ii}(M_i^2) = 0 \rightarrow \delta Z_{ii}$
- $\qquad \qquad \blacktriangleright \quad | \widetilde{\mathcal{R}}e\hat{\Sigma}_{ij}(M_i^2) = 0 \rightarrow \delta Z_{ij}$
- $\widetilde{\mathcal{R}.e}\,\hat{T}_i=0\rightarrow\delta T_i$

SINGLET VEV RENORMALISATION

$$\phi_s + v_s \to Z_S^{1/2}(\phi_s + v_s + \delta \bar{v}_s)$$
, $\delta \bar{v}_s = \delta \bar{v}_s|^{\infty} + \delta \bar{v}_s|^{\sin s}$

- $\delta \bar{v}_s$ $|\infty| = 0$ in $R_{\mathcal{E}}$ gauge [Lee,Zinn-Justin '72;Gorbahn et. al '09;Sperling,Stöckinger,Voigt '13]
- δZ_S |∞ = 0 at 1L (S prop. corr. given by $\mathcal{L} \supset \lambda_3 \Phi^{\dagger} \Phi S^2 \Rightarrow$ no momentum dep.)

$$\hookrightarrow \delta^{(1)} v_s \equiv 0, (\overline{MS} \text{ def.})$$

SINGLET VEV RENORMALISATION

$$\phi_s + v_s \rightarrow Z_S^{1/2}(\phi_s + v_s + \delta \bar{v}_s)$$
, $\delta \bar{v}_s = \delta \bar{v}_s|^{\infty} + \delta \bar{v}_s|^{\sin s}$

- $\delta \bar{v}_s$ $|\infty| = 0$ in $R_{\mathcal{E}}$ gauge [Lee,Zinn-Justin '72;Gorbahn et. al '09;Sperling,Stöckinger,Voigt '13]
- [∞] δZ_S |[∞] = 0 at 1L (S prop. corr. given by $\mathcal{L} \supset \lambda_3 \Phi^{\dagger} \Phi S^2 \Rightarrow$ no momentum dep.)

$$\hookrightarrow \delta^{(1)} v_s \equiv 0, (\overline{MS} \text{ def.})$$

MIXING ANGLE OR MIXING MASS CT RENORMALISATION

$$U(\alpha)^0 \equiv U(\alpha)$$
: no explicit $\delta \alpha \ (\Rightarrow \delta Z_{hH})$. BUT $\delta m_{hH}^2 = (m_H^2 - m_h^2) \delta \alpha$

SINGLET VEV RENORMALISATION

$$\phi_s + v_s \rightarrow Z_S^{1/2}(\phi_s + v_s + \delta \bar{v}_s)$$
, $\delta \bar{v}_s = \delta \bar{v}_s|^{\infty} + \delta \bar{v}_s|^{\sin s}$

- $\delta \bar{v}_s$ $|\infty| = 0$ in $R_{\mathcal{E}}$ gauge [Lee,Zinn-Justin '72;Gorbahn et. al '09;Sperling,Stöckinger,Voigt '13]
- [∞] δZ_S |[∞] = 0 at 1L (S prop. corr. given by $\mathcal{L} \supset \lambda_3 \Phi^{\dagger} \Phi S^2 \Rightarrow$ no momentum dep.)

$$\hookrightarrow \delta^{(1)} v_s \equiv 0, (\overline{\mathit{MS}} \ \mathsf{def.})$$

MIXING ANGLE OR MIXING MASS CT RENORMALISATION

 $^{□}$ $U(\alpha)^0 \equiv U(\alpha)$: no explicit $\delta\alpha$ (⇒ δZ_{hH}). BUT $\delta m_{hH}^2 = (m_H^2 - m_h^2) \delta\alpha$

$$\widetilde{\mathcal{R}} e \hat{\Sigma}_{ij}(M_i^2) = 0 \rightarrow \boxed{\delta Z_{ij} = \frac{2}{m_i^2 - m_j^2} \left[\widetilde{\mathcal{R}} e \Sigma_{ij}(m_j^2) - \delta m_{hH}^2\right], \quad i, j = h, H, i \neq j}$$

SINGLET VEV RENORMALISATION

$$\phi_s + v_s \rightarrow Z_S^{1/2}(\phi_s + v_s + \delta \bar{v}_s)$$
, $\delta \bar{v}_s = \delta \bar{v}_s|^{\infty} + \delta \bar{v}_s|^{\sin s}$

- $\delta \bar{v}_s$ $|^{\infty} = 0$ in $R_{\mathcal{E}}$ gauge [Lee,Zinn-Justin '72;Gorbahn et. al '09;Sperling,Stöckinger,Voigt '13]
- [∞] δZ_S |[∞] = 0 at 1L (S prop. corr. given by $\mathcal{L} \supset \lambda_3 \Phi^{\dagger} \Phi S^2 \Rightarrow$ no momentum dep.)

$$\hookrightarrow \delta^{(1)} v_s \equiv 0, (\overline{MS} \text{ def.})$$

MIXING ANGLE OR MIXING MASS CT RENORMALISATION

- $^{□}$ $U(\alpha)^0 \equiv U(\alpha)$: no explicit $\delta\alpha$ (⇒ δZ_{hH}). BUT $\delta m_{hH}^2 = (m_H^2 m_h^2) \delta\alpha$
 - $\widetilde{\mathcal{R}}e\hat{\Sigma}_{ij}(M_i^2) = 0 \rightarrow \boxed{\delta Z_{ij} = \frac{2}{m_i^2 m_j^2} \left[\widetilde{\mathcal{R}}e\Sigma_{ij}(m_j^2) \delta m_{hH}^2\right], \quad i, j = h, H, i \neq j}$
- [™] Customary definition: symmetrize $δZ_{hH} = δZ_{Hh}$ (commonly used in squark renorm. in SUSY, some ext. Higgs renorm.)

SINGLET VEV RENORMALISATION

$$\phi_s + v_s \to Z_S^{1/2}(\phi_s + v_s + \delta \bar{v}_s)$$
, $\delta \bar{v}_s = \delta \bar{v}_s|^{\infty} + \delta \bar{v}_s|^{\sin}$

- $\delta \bar{v}_s$ $|\infty| = 0$ in $R_{\mathcal{E}}$ gauge [Lee,Zinn-Justin '72;Gorbahn et. al '09;Sperling,Stöckinger,Voigt '13]
- δZ_S |∞ = 0 at 1L (S prop. corr. given by $L \supset \lambda_3 \Phi^{\dagger} \Phi S^2 \Rightarrow$ no momentum dep.)

$$\hookrightarrow \delta^{(1)} v_s \equiv 0, (\overline{MS} \text{ def.})$$

MIXING ANGLE OR MIXING MASS CT RENORMALISATION

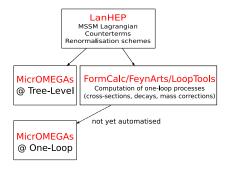
 $U(\alpha)^0 \equiv U(\alpha)$: no explicit $\delta \alpha \ (\Rightarrow \delta Z_{hH})$. BUT $\delta m_{hH}^2 = (m_H^2 - m_h^2) \, \delta \alpha$

$$\widetilde{\mathcal{R}}e\hat{\Sigma}_{ij}(M_i^2) = 0 \rightarrow \boxed{\delta Z_{ij} = \frac{2}{m_i^2 - m_j^2} \left[\widetilde{\mathcal{R}}e\Sigma_{ij}(m_j^2) - \delta m_{hH}^2\right], \quad i, j = h, H, i \neq j}$$

Customary definition: symmetrize $\delta Z_{hH} = \delta Z_{Hh}$ (commonly used in squark renorm. in SUSY, some ext. Higgs renorm.) \rightarrow Gauge invariance? (see later)

$$\delta m_{hH}^2 = \frac{1}{2} \left[\widetilde{\mathcal{R}} e \Sigma_{hH}(m_h^2) + \widetilde{\mathcal{R}} e \Sigma_{hH}(m_H^2) \right] \text{ and } \delta Z_{hH} = \frac{\widetilde{\mathcal{R}} e \Sigma_{hH}(m_H^2) - \widetilde{\mathcal{R}} e \Sigma_{hH}(m_h^2)}{m_h^2 - m_H^2}$$

AUTOMATIC TOOL FOR ONE-LOOP CALCULATIONS: SLOOPS



ST.OOPS

An automatic code for calculation of loops diagrams for \mathcal{SM} and \mathcal{BSM} processes with application to colliders, astrophysics and cosmology.

- <u>Automatic</u> derivation of the CT Feynman rules and computation of the CT's
- ► Models renormalized: SM, MSSM, NMSSM, xSM (w/ & w/o singlet vev)
- Modularity between different renormalisation schemes.
- ► Non-linear gauge fixing.
- ► Checks: results UV,IR finite and gauge independent.

http://code.sloops.free.fr/

INVESTIGATING GAUGE INVARIANCE : GAUGE FIXING

Non-Linear gauge fixing

$$\mathcal{L}_{GF} = -\frac{1}{\xi_{W}} |(\partial_{\mu} - ie\tilde{\alpha}A_{\mu} - igc_{w}\tilde{\beta}Z_{\mu})W^{\mu +}$$

$$+ i\xi_{W} \frac{g}{2} (v + \tilde{\delta}_{1}h + \tilde{\delta}_{2}H + i\tilde{\kappa}G^{0})G^{+} |^{2}$$

$$-\frac{1}{2\xi_{Z}} (\partial_{\mu}Z^{\mu} + \xi_{Z} \frac{g}{2c_{w}} (v + \tilde{\epsilon}_{1}h + \tilde{\epsilon}_{2}H)G^{0})^{2}$$

$$-\frac{1}{2\xi_{A}} (\partial_{\mu}A^{\mu})^{2}$$

INVESTIGATING GAUGE INVARIANCE : GAUGE FIXING

Non-Linear gauge fixing

$$\mathcal{L}_{GF} = -\frac{1}{\xi_{W}} |(\partial_{\mu} - ie\tilde{\alpha}A_{\mu} - igc_{w}\tilde{\beta}Z_{\mu})W^{\mu +}$$

$$+i\xi_{W}\frac{g}{2}(v + \tilde{\delta}_{1}h + \tilde{\delta}_{2}H + i\tilde{\kappa}G^{0})G^{+}|^{2}$$

$$-\frac{1}{2\xi_{Z}}(\partial_{\mu}Z^{\mu} + \xi_{Z}\frac{g}{2c_{w}}(v + \tilde{\epsilon}_{1}h + \tilde{\epsilon}_{2H})G^{0})^{2}$$

$$-\frac{1}{2\xi_{A}}(\partial_{\mu}A^{\mu})^{2}$$

$$G$$
 $eM_W(1+ ilde{lpha}g_{\mu
u})$

 $\xi_{W,Z,A} = 1$ (Feynman gauge)

INVESTIGATING GAUGE INVARIANCE : GAUGE FIXING

Non-Linear gauge fixing

$$\begin{split} \mathcal{L}_{\textit{GF}} &= -\frac{1}{\xi_{\textit{W}}} |(\partial_{\mu} - i e \tilde{\alpha} A_{\mu} - i g c_{\textit{w}} \tilde{\beta} Z_{\mu}) W^{\mu\,+} \\ &+ i \xi_{\textit{W}} \frac{g}{2} (v + \tilde{\delta}_{1} h + \tilde{\delta}_{2} H + i \tilde{\kappa} G^{0}) G^{+} \mid^{2} \\ &- \frac{1}{2\xi_{\textit{Z}}} (\partial_{\mu} Z^{\mu} + \xi_{\textit{Z}} \frac{g}{2c_{\textit{w}}} (v + \tilde{\epsilon}_{1} h + \tilde{\epsilon}_{2H}) G^{0})^{2} \\ &- \frac{1}{2\xi_{\textit{A}}} (\partial_{\mu} A^{\mu})^{2} \end{split}$$

$$\xi_{W,Z,A} = 1$$
 (Feynman gauge)

- → Gauge parameter dependence in gauge/Goldstone/ghost vertices.
- → No "unphysical" threshold, no higher rank tensor.

▶ Random point, numerically vary $\Delta \propto 1/\epsilon = 0 \dots 10^7$ and nlgs = $\alpha, \beta, \tilde{\kappa}, \tilde{\delta}_i, \tilde{\epsilon}_i = 0 \dots 10$

	$\delta \Gamma^{ ext{1-loop}}(ext{ extit{H}} ightarrow ext{ ext{ ext{h}}} ext{ ext{ ext{ ext{I}}}}) ext{ ext{ ext{ ext{ ext{ ext{ ext{ ext{$		
Scheme	$\Delta=0,\{nlgs\}=0$	$\Delta=10^7, \{nlgs\}=0$	$\Delta=10^7, \{nlgs\}=10$
OS	+4.26334888	+4.26334886	$-5.27015844 \times 10^{6}$

▶ Random point, numerically vary $\Delta \propto 1/\epsilon = 0 \dots 10^7$ and nlgs $= \alpha, \beta, \tilde{\kappa}, \tilde{\delta}_i, \tilde{\epsilon}_i = 0 \dots 10$

	$\delta \Gamma^{ ext{1-loop}}(ext{ extit{H}} ightarrow ext{ ext{hh}}) ext{ ext{ ext{IMeV}}}$		
Scheme	$\Delta = 0, \{nlgs\} = 0$	$\Delta=10^7,\{nlgs\}=0$	$\Delta=10^7,\{nlgs\}=10$
OS	+4.26334888	+4.2633488 <mark>6</mark>	$-5.27015844 \times 10^{6}$

Remind:

$$\delta m_{hH}^2 = \frac{1}{2} \left[\widetilde{\mathcal{R}} e \Sigma_{hH}(m_h^2) + \widetilde{\mathcal{R}} e \Sigma_{hH}(m_H^2) \right] \text{ and } \delta Z_{hH} = \frac{\widetilde{\mathcal{R}} e \Sigma_{hH}(m_H^2) - \widetilde{\mathcal{R}} e \Sigma_{hH}(m_h^2)}{m_h^2 - m_H^2}$$

▶ Random point, numerically vary $\Delta \propto 1/\epsilon = 0 \dots 10^7$ and nlgs = $\alpha, \beta, \tilde{\kappa}, \tilde{\delta}_i, \tilde{\epsilon}_i = 0 \dots 10$

	$\delta \Gamma^{ ext{1-loop}}(extit{H} ightarrow extit{hh}) [extit{MeV}]$		
Scheme	$\Delta=0,\{nlgs\}=0$	$\Delta=10^7,\{nlgs\}=0$	$\Delta = 10^7, \{nlgs\} = 10$
OS	+4.2633488 <mark>8</mark>	+4.2633488 <mark>6</mark>	$-5.27015844 \times 10^{6}$

Remind:

$$\delta \textit{m}_\textit{hH}^2 = \frac{1}{2} \left[\widetilde{\mathcal{R}} e \Sigma_\textit{hH} (\textit{m}_\textit{h}^2) + \widetilde{\mathcal{R}} e \Sigma_\textit{hH} (\textit{m}_\textit{H}^2) \right] \text{ and } \delta \textit{Z}_\textit{hH} = \frac{\widetilde{\mathcal{R}} e \Sigma_\textit{hH} (\textit{m}_\textit{H}^2) - \widetilde{\mathcal{R}} e \Sigma_\textit{hH} (\textit{m}_\textit{h}^2)}{\textit{m}_\textit{h}^2 - \textit{m}_\textit{H}^2}$$

$$\begin{split} \Sigma_{hH}(p^2) &=& \left. \Sigma_{hH}(p^2) \right|_{\xi_W = \xi_Z = 1, \{n \mid gs\} = 0} & \Leftarrow \underline{\text{Feynman gauge}} \\ &+& \left. \frac{1}{16\pi^2} \left\{ \frac{g^2}{2} \left[\tilde{\delta}_1(m_H^2 - p^2) s_\alpha + \tilde{\delta}_2(m_h^2 - p^2) c_\alpha \right] B_0 \left(p^2, m_W^2, m_W^2 \right) \right\} \\ &+& \left. \frac{1}{16\pi^2} \left\{ \frac{g^{'2}}{4s_W^2} \left[\tilde{\epsilon}_1(m_H^2 - p^2) s_\alpha + \tilde{\epsilon}_2(m_h^2 - p^2) c_\alpha \right] B_0 \left(p^2, m_Z^2, m_Z^2 \right) \right\} \end{split}$$

▶ Random point, numerically vary $\Delta \propto 1/\epsilon = 0 \dots 10^7$ and nlgs = $\alpha, \beta, \tilde{\kappa}, \tilde{\delta}_i, \tilde{\epsilon}_i = 0 \dots 10$

	$\delta \Gamma^{1-loop}(H o hh) [MeV]$		
Scheme	$\Delta=0,\{nlgs\}=0$	$\Delta=10^7,\{nlgs\}=0$	$\Delta=10^7,\{nlgs\}=10$
OS	+4.2633488 <mark>8</mark>	+4.2633488 <mark>6</mark>	$-5.27015844 \times 10^{6}$

Remind:

$$\delta \textit{m}^2_\textit{hH} = \frac{1}{2} \left[\widetilde{\mathcal{R}} e \Sigma_\textit{hH} (\textit{m}^2_\textit{h}) + \widetilde{\mathcal{R}} e \Sigma_\textit{hH} (\textit{m}^2_\textit{H}) \right] \text{ and } \delta \textit{Z}_\textit{hH} = \frac{\widetilde{\mathcal{R}} e \Sigma_\textit{hH} (\textit{m}^2_\textit{H}) - \widetilde{\mathcal{R}} e \Sigma_\textit{hH} (\textit{m}^2_\textit{h})}{\textit{m}^2_\textit{h} - \textit{m}^2_\textit{H}}$$

$$\begin{split} \Sigma_{hH}(\rho^2) &=& \left. \Sigma_{hH}(\rho^2) \right|_{\xi_W = \xi_Z = 1, \{n l g s\} = 0} \! \Leftarrow \frac{\text{Feynman gauge}}{\text{Feynman gauge}} \\ &+& \left. \frac{1}{16\pi^2} \left\{ \frac{g^2}{2} \left[\tilde{\delta}_1(m_H^2 - \rho^2) s_\alpha + \tilde{\delta}_2(m_h^2 - \rho^2) c_\alpha \right] B_0 \left(\rho^2, m_W^2, m_W^2 \right) \right\} \\ &+& \left. \frac{1}{16\pi^2} \left\{ \frac{g^{'2}}{4 s_W^2} \left[\tilde{\epsilon}_1(m_H^2 - \rho^2) s_\alpha + \tilde{\epsilon}_2(m_h^2 - \rho^2) c_\alpha \right] B_0 \left(\rho^2, m_Z^2, m_Z^2 \right) \right\} \end{split}$$

 δm_{hH}^2 linked to def. of mix. angle (input param.) \Rightarrow Gl def mandatory!

▶ Random point, numerically vary $\Delta \propto 1/\epsilon = 0 \dots 10^7$ and nlgs = $\alpha, \beta, \tilde{\kappa}, \tilde{\delta}_i, \tilde{\epsilon}_i = 0 \dots 10$

	$\delta \Gamma^{ ext{1-loop}}(ext{ extit{H}} ightarrow ext{ ext{ ext{h}}} h) ext{ ext{ ext{ ext{IMeV}}}}$		
Scheme	$\Delta = 0, \{nlgs\} = 0$	$\Delta=10^7,\{nlgs\}=0$	$\Delta=10^7,\{nlgs\}=10$
OS	+4.26334888	+4.2633488 <mark>6</mark>	-5.27015844×10^6

 δm_{hH}^2 linked to def. of mix. angle (input param.) \Rightarrow GI def mandatory!

Gauge independent definition:[Espinosa, Yamada '03, Baro, Boudjema '09]

$$\boxed{\delta m_{hH}^2 = \widetilde{\mathcal{R}} e \, \Sigma_{hH}(p_*^2)\big|_{\xi_W = \xi_Z = 1, \tilde{\delta}_i = 0} \quad \text{with} \quad p_*^2 = \frac{m_h^2 + m_H^2}{2}} : \underline{\text{"Improved OS"}}$$

▶ Random point, numerically vary $\Delta \propto 1/\epsilon = 0 \dots 10^7$ and nlgs = $\alpha, \beta, \tilde{\kappa}, \tilde{\delta}_i, \tilde{\epsilon}_i = 0 \dots 10$

	$\delta \Gamma^{ ext{1-loop}}(ext{ extit{H}} ightarrow ext{ ext{ ext{h}} ext{ ext{h}}})[ext{ ext{MeV}}]$		
Scheme	$\Delta=0,\{nlgs\}=0$	$\Delta=10^7,\{nlgs\}=0$	$\Delta=10^7,\{nlgs\}=10$
OS	+4.26334888	+4.26334886	$-5.27015844 \times 10^{6}$
Improved	+3.939356 <mark>9</mark>	+3.939356 <mark>8</mark>	+3.93935 <mark>56</mark>

 δm_{hH}^2 linked to def. of mix. angle (input param.) \Rightarrow GI def mandatory!

Gauge independent definition:[Espinosa, Yamada '03, Baro, Boudjema '09]

$$\boxed{\delta m_{hH}^2 = \widetilde{\mathcal{R}} e \, \Sigma_{hH}(p_*^2)\big|_{\xi_W = \xi_Z = 1, \tilde{\delta}_i = 0} \quad \text{with} \quad p_*^2 = \frac{m_h^2 + m_H^2}{2}} : \underline{\text{"Improved OS"}}$$

NUMERICAL SCAN: CONSTRAINTS

- $m_{H_{SM}} = 125.09 \text{ GeV}$
- Set of constraints as in [Robens, Stefaniak '15]

Theoretical constraints:

- \checkmark Vac. stability/potential minimization up to $\mu_{\rm RG} \sim 4 \times 10^{10}$ GeV (iff. $h \simeq H_{\rm SM}$)
- ✓ Perturbative unitarity (at LO)
- \checkmark Perturbativity of couplings, $|\lambda_i| \leq 4\pi$, up to μ_{RG} (only for $m_H > m_{h \simeq H_{SM}}$)

Experimental constraints:

- ✓ EW oblique parameters S, T, U
- √ NLO calculation W mass [Lopez-Val, Robens '14]
- ✓ 95% C.L limits from Higgs searches at LEP and LHC (HiggsBounds)
- √ Consistency with Higgs signal strength (HiggsSignals)

Two regions:

- High mass region: $m_H > 2m_{h \simeq H_{SM}}$
- Solution: Low mass region: $m_{H \simeq H_{SM}} < 2m_h$

NUMERICAL SCAN: CONSTRAINTS

- $m_{H_{SM}} = 125.09 \text{ GeV}$
- Set of constraints as in [Robens, Stefaniak '15]

Theoretical constraints:

- \checkmark Vac. stability/potential minimization up to $\mu_{\rm RG} \sim 4 \times 10^{10}$ GeV (iff. $h \simeq H_{\rm SM}$)
- ✓ Perturbative unitarity (at LO)
- Perturbativity of couplings, $|\lambda_i| \leq 4\pi$, up to μ_{RG} (only for $m_H > m_{h \simeq H_{SM}}$)

Experimental constraints:

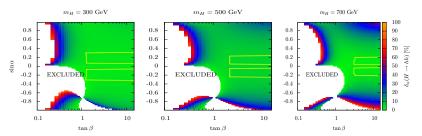
- ✓ EW oblique parameters S, T, U
- NLO calculation W mass [Lopez-Val, Robens '14]
- √ 95% C.L limits from Higgs searches at LEP and LHC (HiggsBounds)
- Consistency with Higgs signal strength (HiggsSignals)

Two regions:

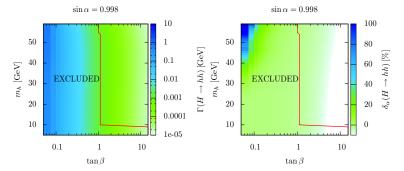
- High mass region: $m_H > 2m_{h \simeq H_{SM}}$
- Low mass region: $m_{H \simeq H_{SM}} < 2m_h$

RESULTS: HIGH MASS REGION $m_H > 2m_{h_{SM}}$

$$\Gamma^{
m LO}(H o hh) = rac{\lambda_{Hhh}^2}{32\,\pi\,m_H}\,\sqrt{1-rac{4m_h^2}{m_H^2}}\, {
m where}\,\,\, \lambda_{Hhh}\,=\, -rac{is_{2lpha}}{v}\,\left[m_h^2+rac{m_H^2}{2}
ight]\,\left(c_lpha+s_lpha\,t_eta^{-1}
ight)$$



RESULTS: LOW MASS REGION $m_{H_{SM}} > 2m_h$



CONCLUSIONS AND OUTLOOK

Summary:

- Full 1L renormalisation of the xSM
- "Best scheme": Improved OS (should also be commonly used for mixing 2×2 scalar field system rather than OS scheme)
- Full NLO corrections to $\Gamma(H \rightarrow hh)$
- Mild EW corrections when constraints applied
- Benchmark points included in LHCHXSWG YR4

CONCLUSIONS AND OUTLOOK

Summary:

- Full 1L renormalisation of the xSM
- "Best scheme": Improved OS (should also be commonly used for mixing 2×2 scalar field system rather than OS scheme)
- Full NLO corrections to $\Gamma(H \rightarrow hh)$
- Mild EW corrections when constraints applied
- Benchmark points included in LHCHXSWG YR4

Outlook:

- Full Higgs boson lineshapes at NLO EW
- \square Physical definition for v_s (e.g through $H \to hh$)
- Finite width and interference/off-shell effects in di-higgs production
- Relevant effects on EW baryogenesis?

