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Introduction

Standard Model issues (non exhaustive...) :

Complex gauge structure : SU(3)c ⊗ SU(2)L ⊗ U(1)Y : no gauge
coupling uni�cation at high energy scale

Hierarchy problem and vacuum stability

Neutrinos masses

Why 3 families of quark and leptons?

Other important issues :

Dark matter : Rotation curves, the Bullet Cluster, the CMB,
N-body simulations, structure formation → Cold Dark Matter?

Dark energy : 70% of the energy budget of the universe

Can we �nd a more general description of the particle content of the

Standard Model and include dark matter?
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Toward Grand Uni�cation Theories?

End of the 19th century : First step toward GUTs : James Clerk Maxell in "A
Dynamical Theory of the Electromagnetic Field" unify electricity and
magnetism

In the 60's : Glashow, Weinberg and Salam describe weak interactions and
electromagnetism with a single gauge structure SU(2)⊗ U(1)

In the 1974 First attempt to embed the SM gauge group in a single one by
Georgi and Glashow with SU(5)
24 = (8, 1, 0)︸ ︷︷ ︸

g

⊕ (1, 3, 0)︸ ︷︷ ︸
W 1,2,3

⊕ (1, 1, 0)︸ ︷︷ ︸
B

⊕ (3, 2,−5/6)︸ ︷︷ ︸
X

⊕ (3, 2,+5/6)︸ ︷︷ ︸
X

Nice features :

1 generation of SM fermions in 5⊕ 10

sin2(θw ) = 3/8 predicted at MGUT

Q(d) = 1/3Q(e−) natural
Anomaly free theory

But there are some issues :

Proton decay predicted but too fast!
Mx ≈ 1012MZ

No gauge coupling uni�cation
No clue about νR
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GUT with SO(10) : Minkowski and Fritzsch

One generation of SM fermions + νR embedded in the 16 representation

Uni�cation of gauge couplings at ∼ 1015GeV

Intermediate scale at ∼ 1010GeV → natural seesaw?

Anomaly free

Respecting proton lifetime constraints

Remnant Z2 symmetry → DM stability? [Mambrini et al. ′15]

Running of SM gauge couplings in SO(10) GUT (1502.06929)
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The emergence of a Z ′

We consider general GUT inspired scenarios assuming that SO(10) is
broken SO(10)→ Gint → GSM ⊗ U ′(1).

We consider also a larger group E6 where E6 ⊃ SO(10)

Grand uni�cation inspired scenarios [Langacker 0801.1345]

Scenario χ : SO(10)→ SU(5)⊗ U(1)χ

Scenario ψ : E6 → SO(10)⊗ U(1)ψ

Scenario η : string inspired Z ′η =
√
3/8Z ′χ +

√
5/8Z ′ψ

B − L and LR scenarios :
SO(10)→ SU(2)L⊗SU(2)R⊗U(1)B−L → SU(2)L⊗U(1)Y⊗U(1)LR

Reference model

Sequential Standard Model (SSM) : couplings Z ′-SM = Z -SM

Can we include dark matter in those models?
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Z
′ portal : the lagrangian

χ ψ η LR B-L SSM

D 2
√
10 2

√
6 2

√
15

√
5/3 1 1

ε̂uL -1 1 -2 -0.109 1/6 1
2
− 2

3
sin2(θW )

ε̂dL -1 1 -2 -0.109 1/6 − 1
2

+ 1
3
sin2(θW )

ε̂uR 1 -1 2 0.656 1/6 − 2
3
sin2(θW )

ε̂dR -3 -1 -1 -0.874 1/6 1
3
sin2(θW )

ε̂χL,R ? ? ? ? ? ?

Couplings from the di�erent theories considered εiL,R = ε̂iL,R/D

the couplings between SM particles (f ) and Z ′ are �xed by construction

the mass of the Z ′ is not �xed

To parametrize our ignorance, we suppose an interaction between the DM

particles (χ) and Z ′ of the form :

L = g ′ (f̄ γµ(Vf − Af γ
5)fZ ′

µ + χ̄γµ(Vχ − Aχγ
5)χZ ′

µ

)
α =

Aχ

Vχ
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Direct detection

→ Try to measure the energy recoil ER of a nucleus from an interaction with
dark matter : LUX, PICO, XENON100, CDMS... and many more in the next

years! (XENON1T, LZ,...)

Event rate (kg−1j−1kev−1)

dR

dER
=

ρ0
Mnucmχ

∫ vesc

vmin

f (v)
dσ

dER
(v ,ER)vdv

DM mass mχ : unknown

nucleus mass Mnuc

DM density in the solar system ρ0 and velocity
distribution f (v) : astrophysical observations

Di�erential cross section dσ/dER :

dσ

dER
=

Mnuc

2µ2nucv2
[σSI0 F

2
SI (q) + σSD0 F 2

SD(q)]

Z ′

N N

χ χ

Scattering of a DM particle
χ on a nucleus N
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Consequences on scattering cross section :

χ χ

q q

N N

χ χ

effective approach

f
q
N

Z ′

Lχq = λχqχ̄χq̄q ⇒ LχN = λχN χ̄χN̄N

λχN =
∑

q f
q
Nλχq with N = n, p

σpSI =
µ2χpg

′4V 2

χ

πM4

Z ′
αSI σpSD =

3µ2χpg
′4A2

χ

πM4

Z ′
αSD

αSI =

∑
A ηAA

2[Vu(1 + Z/A) + Vd(2− Z/A)]2∑
A ηAA

2

αSD =

∑
A ηA[Au(∆p

uS
A
p + ∆n

uS
A
n ) + Ad(∆p

dS
A
p + ∆n

dS
A
n + ∆p

s S
A
p + ∆n

sS
A
n )]2∑

A ηA[SAp + SAn ]2
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Proton and neutron cross sections

σpSD
σpSI

= 3α2αSD
αSI

,
σnSD
σnSI

= 3α2αSD
αSI

(
2Vd + Vu

2Vu + Vd

)2(Au∆p
u + Ad (∆p

d + ∆p
s )

Au∆n
u + Ad (∆n

d + ∆n
s )

)2
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Constraints on σpSD
From Boltzmann equation < σv >' 3× 10−26cm3s−1(' 10−9 GeV−2) for a
thermal dark matter → velocity expansion of < σv > (N : Numerical factor)

< σv > ≈
v→0

m2
χg
′4

πM4
Z ′

(
V 2
χ + NA2

χv
2)∑

f

(A2
f + V 2

f )

We can make a prediction for σpSD respecting the strong constraints form the
LUX collaboration on σpSI , and compare with PICO results (1503.00008).
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The invisible branching ratio

Strong constraints are set on M ′Z by Tevatron, LEP2 and the LHC
(0801.1345), for all theories considered M ′Z & 800 GeV at least.

Combining those constraints and direct detection we can constraint the
invisible branching ratio :

Brχ =
ΓZ

′
χ

ΓZ ′
χ +

∑
f ΓZ

′
SM

Brχ =

[
1 +

µ2χpg
′4αSI

πM4
Z ′

∑
f

A2
f + V 2

f

σpSI (1 + α2)

]−1
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Conclusion

Work done :

SO(10) GUT framework

Evolution of SD/SI ratio with nature of the DM coupling

Constraints on σSD

Constraints on the branching ratio

Perspectives :

Combine direct detection and collider experiments constraints
→ possible signatures at the LHC?

Incoporate DM in the theoretical models!

Paper in preparation : G.Arcadi, Y.Mambrini, M.Pierre
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