Identifying the nature of dark matter in GUT framework

Mathias Pierre

in collaboration with Yann Mambrini and Giorgio Arcadi Laboratoire de Physique Théorique d'Orsay

Rencontre de Physique des Particules Annecy, 25th of January 2016

- 2 From Grand Unification Theories to Z' portal DM
 - Z' from SO(10) GUT
 - Combining Z' and dark matter
- Distinguish Z' theories and experimental constraints
 Direct detection
 - Experimental constraints

Introduction

Standard Model issues (non exhaustive...) :

- Complex gauge structure : $SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$: no gauge coupling unification at high energy scale
- Hierarchy problem and vacuum stability
- Neutrinos masses
- Why 3 families of quark and leptons?

Other important issues :

- <u>Dark matter</u>: Rotation curves, the *Bullet Cluster*, the CMB, N-body simulations, structure formation → Cold Dark Matter?
- Dark energy : 70% of the energy budget of the universe

Can we find a more general description of the particle content of the Standard Model and include dark matter?

Toward Grand Unification Theories?

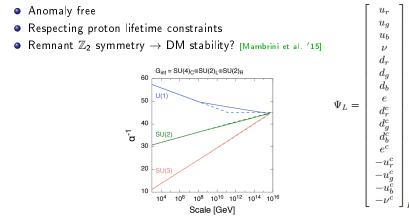
End of the 19th century : First step toward GUTs : James Clerk Maxell in "A Dynamical Theory of the Electromagnetic Field" unify electricity and magnetism

<u>In the 60's</u> : Glashow, Weinberg and Salam describe weak interactions and electromagnetism with a single gauge structure $SU(2)\otimes U(1)$

In the 1974 First attempt to embed the SM gauge group in a single one by Georgi and Glashow with SU(5)

$$\mathbf{24} = \underbrace{(\mathbf{8}, \mathbf{1}, \mathbf{0})}_{g} \oplus \underbrace{(\mathbf{1}, \mathbf{3}, \mathbf{0})}_{W^{\mathbf{1}, \mathbf{2}, \mathbf{3}}} \oplus \underbrace{(\mathbf{1}, \mathbf{1}, \mathbf{0})}_{B} \oplus \underbrace{(\mathbf{3}, \mathbf{2}, -5/6)}_{X} \oplus \underbrace{(\overline{\mathbf{3}}, \mathbf{2}, +5/6)}_{X}$$

Nice features :


1 generation of SM fermions in $\overline{\mathbf{5}} \oplus \mathbf{10}$ $\sin^2(\theta_w) = 3/8$ predicted at M_{GUT} $Q(d) = 1/3Q(e^-)$ natural Anomaly free theory

But there are some issues :

Proton decay predicted but too fast! $M_x \approx 10^{12} M_Z$ No gauge coupling unification No clue about ν_R

GUT with SO(10) : Minkowski and Fritzsch

- One generation of SM fermions + ν_R embedded in the 16 representation
- ullet Unification of gauge couplings at $\sim 10^{15} ext{GeV}$
- Intermediate scale at $\sim 10^{10} \, \text{GeV}
 ightarrow$ natural seesaw?

Running of SM gauge couplings in SO(10) GUT (1502.06929)

The emergence of a Z'

We consider general GUT inspired scenarios assuming that SO(10) is broken $SO(10) \rightarrow G_{int} \rightarrow G_{SM} \otimes U'(1)$.

We consider also a larger group E_6 where $E_6 \supset SO(10)$

Grand unification inspired scenarios [Langacker 0801.1345]

- Scenario χ : $SO(10)
 ightarrow SU(5) \otimes U(1)_{\chi}$
- Scenario ψ : $E_6
 ightarrow SO(10) \otimes U(1)_\psi$
- Scenario η : string inspired $Z'_{\eta} = \sqrt{3/8} Z'_{\chi} + \sqrt{5/8} Z'_{\psi}$
- B L and LR scenarios : $SO(10) \rightarrow SU(2)_L \otimes SU(2)_R \otimes U(1)_{B-L} \rightarrow SU(2)_L \otimes U(1)_Y \otimes U(1)_{LR}$

Reference model

Sequential Standard Model (SSM) : couplings Z'-SM = Z-SM

Can we include dark matter in those models?

Introduction From Grand Unification Theories to Z' portal DM Distinguish Z' theories and experimental constraints

Z' portal : the lagrangian

	χ	ψ	η	LR	B-L	SSM
D	$2\sqrt{10}$	$2\sqrt{6}$	$2\sqrt{15}$	$\sqrt{5/3}$	1	1
êμ	-1	1	-2	-0.109	1/6	$\frac{1}{2}-\frac{2}{3}\sin^2(\theta_W)$
$\hat{\epsilon}^{d}_{L}$	-1	1	-2	-0.109	1/6	$-\frac{1}{2}+\frac{1}{3}\sin^2(\theta_W)$
$\hat{\epsilon}_R^u$	1	-1	2	0.656	1/6	$-\frac{2}{3}\sin^2(\theta_W)$
$\hat{\epsilon}_R^d$	-3	-1	-1	-0.874	1/6	$\frac{1}{3}\sin^2(\theta_W)$
$\hat{\epsilon}^{\chi}_{L,R}$?	?	?	?	?	?

Couplings from the different theories considered $\epsilon^i_{L,R} = \hat{\epsilon}^i_{L,R}/D$

- the couplings between SM particles (f) and Z' are fixed by construction
- the mass of the Z' is not fixed
- To parametrize our ignorance, we suppose an interaction between the DM particles (χ) and Z' of the form :

$$\mathcal{L} = g' \left(\bar{f} \gamma^{\mu} (V_f - A_f \gamma^5) f Z'_{\mu} + \bar{\chi} \gamma^{\mu} (V_{\chi} - A_{\chi} \gamma^5) \chi Z'_{\mu} \right) \quad \alpha =$$

Introduction

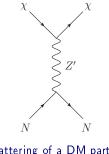
- 2 From Grand Unification Theories to Z' portal DM
 - Z' from SO(10) GUT
 - Combining Z' and dark matter

Distinguish Z' theories and experimental constraints Direct detection

• Experimental constraints

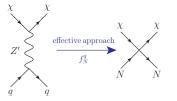
Introduction From Grand Unification Theories to Z' portal DM Distinguish Z' theories and experimental constraints 000 •00000

Direct detection


 \rightarrow Try to measure the energy recoil E_R of a nucleus from an interaction with dark matter : LUX, PICO, XENON100, CDMS... and many more in the next years! (XENON1T, LZ,...)

Event rate $(kg^{-1}j^{-1}kev^{-1})$

$$\frac{dR}{dE_R} = \frac{\rho_0}{M_{nuc} m_{\chi}} \int_{v_{min}}^{v_{esc}} f(v) \frac{d\sigma}{dE_R} (v, E_R) v dv$$

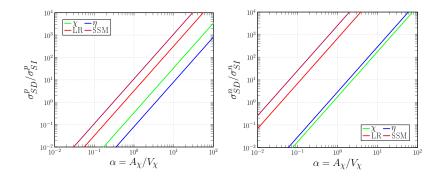

- DM mass m_{χ} : unknown
- nucleus mass M_{nuc}
- DM density in the solar system ρ₀ and velocity distribution f(v) : astrophysical observations
- Differential cross section $d\sigma/dE_R$:

$$\frac{d\sigma}{dE_R} = \frac{M_{nuc}}{2\mu_{nuc}^2 v^2} [\sigma_0^{SI} F_{SI}^2(q) + \sigma_0^{SD} F_{SD}^2(q)]$$

Scattering of a DM particle χ on a nucleus N

Consequences on scattering cross section :

$$\begin{aligned} \mathcal{L}_{\chi q} &= \lambda_{\chi q} \bar{\chi} \chi \bar{q} q \Rightarrow \mathcal{L}_{\chi N} = \lambda_{\chi N} \bar{\chi} \chi \bar{N} N \\ \lambda_{\chi N} &= \sum_{q} f_{N}^{q} \lambda_{\chi q} \text{ with } N = n, p \end{aligned}$$

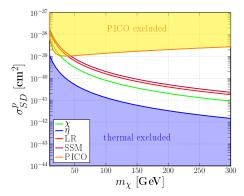

$$\sigma_{SI}^{p} = \frac{\mu_{\chi p}^{2} g^{\prime 4} V_{\chi}^{2}}{\pi M_{Z^{\prime}}^{4}} \alpha_{SI} \qquad \qquad \sigma_{SD}^{p} = \frac{3 \mu_{\chi p}^{2} g^{\prime 4} A_{\chi}^{2}}{\pi M_{Z^{\prime}}^{4}} \alpha_{SD}$$

$$\alpha_{SI} = \frac{\sum_{A} \eta_{A} A^{2} [V_{u}(1 + Z/A) + V_{d}(2 - Z/A)]^{2}}{\sum_{A} \eta_{A} A^{2}}$$

 $\alpha_{SD} = \frac{\sum_{A} \eta_{A} [A_{u}(\Delta_{u}^{p} S_{p}^{A} + \Delta_{u}^{n} S_{n}^{A}) + A_{d}(\Delta_{d}^{p} S_{p}^{A} + \Delta_{d}^{n} S_{n}^{A} + \Delta_{s}^{p} S_{p}^{A} + \Delta_{s}^{n} S_{n}^{A})]^{2}}{\sum_{A} \eta_{A} [S_{p}^{A} + S_{n}^{A}]^{2}}$

Proton and neutron cross sections

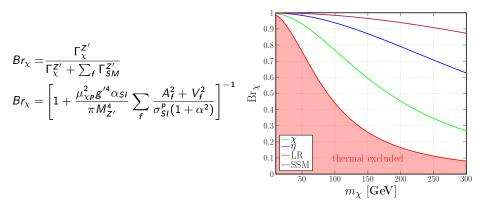
$$\frac{\sigma_{SD}^p}{\sigma_{SI}^p} = 3\alpha^2 \frac{\alpha_{SD}}{\alpha_{SI}}, \qquad \frac{\sigma_{SD}^n}{\sigma_{SI}^n} = 3\alpha^2 \frac{\alpha_{SD}}{\alpha_{SI}} \left(\frac{2V_d + V_u}{2V_u + V_d}\right)^2 \left(\frac{A_u \Delta_u^p + A_d (\Delta_d^p + \Delta_s^p)}{A_u \Delta_u^n + A_d (\Delta_d^n + \Delta_s^n)}\right)^2$$



Constraints on σ_{SD}^{p}

From Boltzmann equation $\langle \sigma v \rangle \simeq 3 \times 10^{-26} \text{cm}^3 \text{s}^{-1} (\simeq 10^{-9} \text{ GeV}^{-2})$ for a thermal dark matter \rightarrow velocity expansion of $\langle \sigma v \rangle (N : \text{Numerical factor})$

$$<\sigma v> \approx_{v\rightarrow 0} \frac{m_{\chi}^2 g'^4}{\pi M_{Z'}^4} \left(V_{\chi}^2 + NA_{\chi}^2 v^2\right) \sum_f (A_f^2 + V_f^2)$$


We can make a prediction for σ_{SD}^{p} respecting the strong constraints form the LUX collaboration on σ_{SI}^{p} , and compare with PICO results (1503.00008).

The invisible branching ratio

Strong constraints are set on M'_Z by Tevatron, LEP2 and the LHC (0801.1345), for all theories considered $M'_Z \gtrsim 800$ GeV at least.

Combining those constraints and direct detection we can constraint the invisible branching ratio :

Conclusion

Work done :

- SO(10) GUT framework
- Evolution of SD/SI ratio with nature of the DM coupling
- Constraints on σ_{SD}
- Constraints on the branching ratio

Perspectives :

- Combine direct detection and collider experiments constraints → possible signatures at the LHC?
- Incoporate DM in the theoretical models!
- Paper in preparation : G.Arcadi, Y.Mambrini, M.Pierre