A systematic approach to Twin SUSY Models

Robert Ziegler (LPTHE)

work in progress with A. Mariotti, A. Katz, S. Pokorski, D. Redigolo

RPP 2016, Annecy

Motivation

- Weak scale unstable under quantum corrections, can be stabilized with new physics at TeV scale
- Negative LHC searches leave existing models tuned at sub-percent level: **"Little Hierarchy Problem"**
- Can be addressed by taking Higgs as PGB

cancel largest one-loop corrections with new top/ gauge partners ~500 GeV

Solving the Little Hierarchy problem

" Little Higgs " Arkani-Hamed, Cohen, Georgi '01

"Twin Higgs"

Chacko, Goh, Harnik '06

Higgs is PGB of explicitly realized global symmetry that is collectively broken:

top partners colored

Higgs is PGB of accidental global symmetry from explicit Z2 symmetry

top partners uncolored

Solving the Little Hierarchy problem

Little Higgs " Arkani-Hamed, Cohen, Georgi '01 Higgs is PGB of explicitly realized global symmetry that is collectively broken: p partners colored

"Twin Higgs"

Chacko, Goh, Harnik '06

Higgs is PGB of accidental global symmetry from explicit Z2 symmetry

top partners uncolored

Need UV completion that addresses Big Hierarchy

Composite Higgs

Barbieri, Greco, Rattazzi, Wulzer '15 Low, Tesi, Wang '15 Supersymmetry

Chang, Hall, Weiner '06 Falkowski, Pokorski, Schmaltz '06 Craig, Howe '13

Solving the Little Hierarchy problem

Little Higgs " Arkani-Hamed, Cohen, Georgi '01 Higgs is PGB of explicitly realized global symmetry that is collectively broken: Sp partners colored

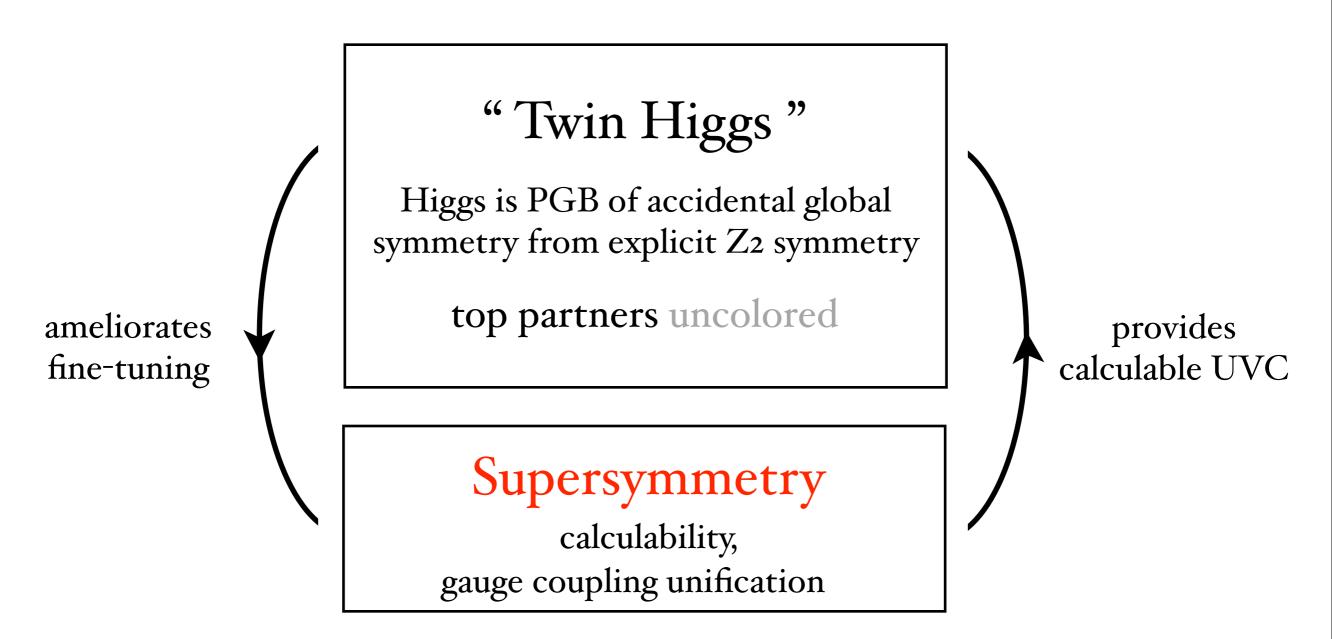
"Twin Higgs"

Chacko, Goh, Harnik '06

Higgs is PGB of accidental global symmetry from explicit Z2 symmetry

top partners uncolored

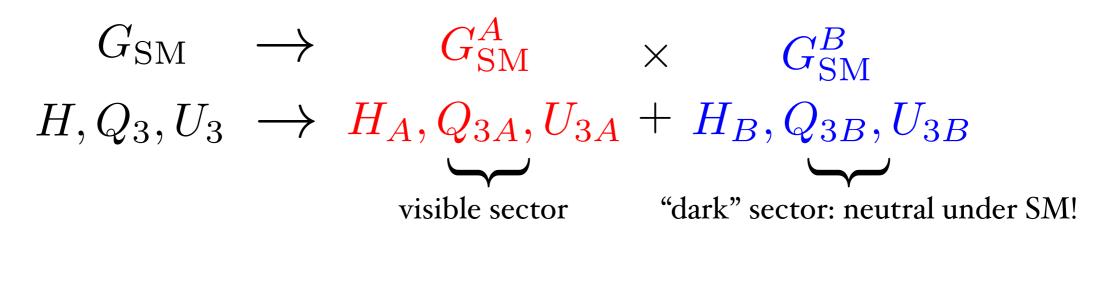
Need UV completion that addresses Big Hierarchy


Composite Higgs

Barbieri, Greco, Rattazzi, Wulzer '15 Low, Tesi, Wang '15 Supersymmetry

Chang, Hall, Weiner '06 Falkowski, Pokorski, Schmaltz '06 Craig, Howe '13

calculability, gauge coupling unification...


Twin SUSY

Only few existing models (tuning 1-2 %), still much room for model-building. **Explore general structure and identify new promising directions** (tuning 10 - 20 % !?)

Twin Higgs: Setup

Double SM gauge fields, Higgs and tops

Natural Z_2 exchange symmetry: $H_A \leftrightarrow H_B \dots$

Minimal ("fraternal") Twin Higgs; double only fields most relevant for naturalness + add what is needed for anomaly cancellation

Twin Higgs: Potential

Classify Higgs potential according to symmetry

$$V_{H}(H_{A}, H_{B}) = V_{H}^{U_{4}} + V_{H}^{\psi_{4}, Z_{2}} + V_{H}^{\psi_{4}, Z_{2}}$$

$$\overset{\text{depends}}{\longrightarrow} \mathcal{H} = \begin{pmatrix} H_{A} \\ H_{B} \end{pmatrix} \stackrel{\text{respects}}{\underset{H_{A} \leftrightarrow H_{B}}{\text{respects only}}} \stackrel{\text{respects only}}{\underset{\text{gauge symmetry}}{\text{respects only}}}$$

 U_4 part dominant, negative mass term

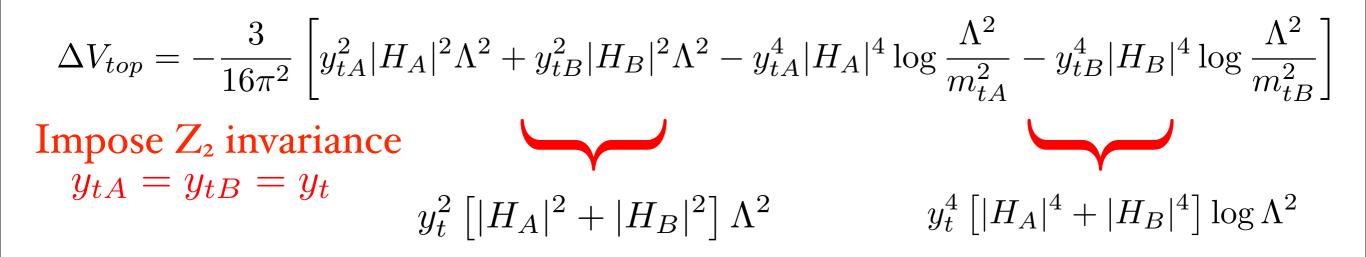
$$V_H^{U_4} = \lambda \left(H_A^{\dagger} H_A + H_B^{\dagger} H_B - f^2 \right)$$

Dark Higgs gets large U_4 breaking vev $H_B^{\dagger}H_B = f^2 - H_A^{\dagger}H_A$

7 GB - 3 eaten by dark gauge bosons = SM Higgs $\approx H_A$

Twin Higgs: Stability

Radiative corrections mainly from top sector


 $V_{\rm Yuk} = y_{tA}Q_AU_AH_A + y_{tB}Q_BU_BH_B$

$$\Delta V_{top} = -\frac{3}{16\pi^2} \left[y_{tA}^2 |H_A|^2 \Lambda^2 + y_{tB}^2 |H_B|^2 \Lambda^2 - y_{tA}^4 |H_A|^4 \log \frac{\Lambda^2}{m_{tA}^2} - y_{tB}^4 |H_B|^4 \log \frac{\Lambda^2}{m_{tB}^2} \right]$$

Twin Higgs: Stability

Radiative corrections mainly from top sector

 $V_{\rm Yuk} = y_{tA}Q_AU_AH_A + y_{tB}Q_BU_BH_B$

Twin Higgs: Stability

Radiative corrections mainly from top sector

 $V_{\rm Yuk} = y_{tA}Q_A U_A H_A + y_{tB}Q_B U_B H_B$

UV cutoff enlarged by loop factor $\delta m_h \sim f/4\pi \sim \Lambda/(4\pi)^2$

N.B.: On bilinear level Z2 invariance automatically implies U4 invariance

Twin Higgs: EWSB

$$V_{H}(H_{A}, H_{B}) = V_{H}^{U_{4}} + V_{H}^{\not{U}_{4}, Z_{2}} + V_{H}^{\not{U}_{4}, \not{Z}_{2}}$$

$$\lambda \left(|H_{A}|^{2} + |H_{B}|^{2} - f^{2}\right) \quad \kappa \left[|H_{A}|^{4} + |H_{B}|^{4}\right] \quad \rho |H_{A}|^{4} + \sigma f^{2} |H_{A}|^{2}$$

$$\rightarrow |H_{B}|^{2} = f^{2} - |H_{A}|^{2} \quad \text{tree+loops} \quad \text{mainly tree}$$

$$\overset{\text{hard Z2 breaking:}}{\text{must be small}}$$

Match to SM Higgs potential and get electroweak scale

$$v^2 \sim \left(1 - \frac{\sigma}{\kappa + \text{loop}}\right) f^2$$

need explicit Z2 breaking, tuned to get v/f hierarchy

Twin SUSY: Setup

Double MSSM gauge superfields, Higgs and tops $H_u, H_d, Q_3, U_3 \rightarrow H_{uA}, H_{dA}, Q_{3A}, U_{3A} + H_{uB}, H_{dB}, Q_{3B}, U_{3B}$ visible sector "dark" sector: neutral under SM! Get large U₄ preserving quartic for $\mathcal{H}_{u,d} = \begin{pmatrix} H_A \\ H_B \end{pmatrix}_{u,d}$ from non-decoupling F-term of singlet $W \supset \lambda S \mathcal{H}_u \mathcal{H}_d$ $\int m_S \gg M_S$ $V^{U_4} = m_u^2 |\mathcal{H}_u|^2 + m_d^2 |\mathcal{H}_d|^2 - b\left(\mathcal{H}_u \mathcal{H}_d + \text{h.c.}\right) + \lambda^2 |\mathcal{H}_u \mathcal{H}_d|^2$

Induce dark higgs vevs: $f^2 = \frac{m_A^2 - m_u^2 - m_d^2}{\lambda^2}$ $\tan^2 \beta = \frac{m_d^2}{m_u^2}$

Twin SUSY: Potential

Classify Higgs potential according to symmetry

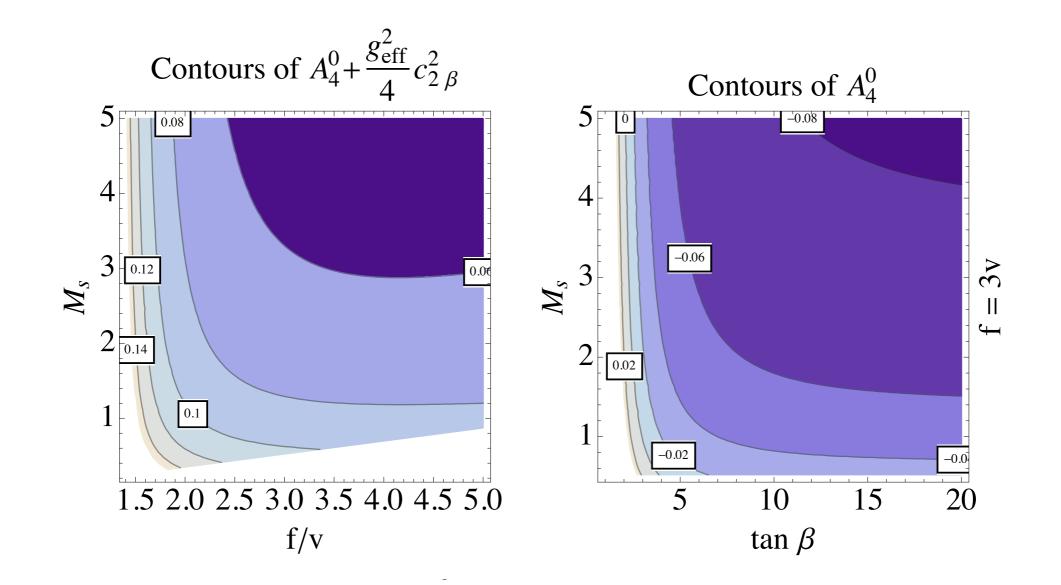
Huge freedom, need systematic approach:

- List U4 breaking operators, divide in Z2 even/odd
- Use PGB approximation: keep only lightest CP-even Higgs
- Match to SM Higgs potential: just 2 parameters
- Check numerically

Twin SUSY: EWSB

Match all operators on 2 eff. parameters in PGB approx

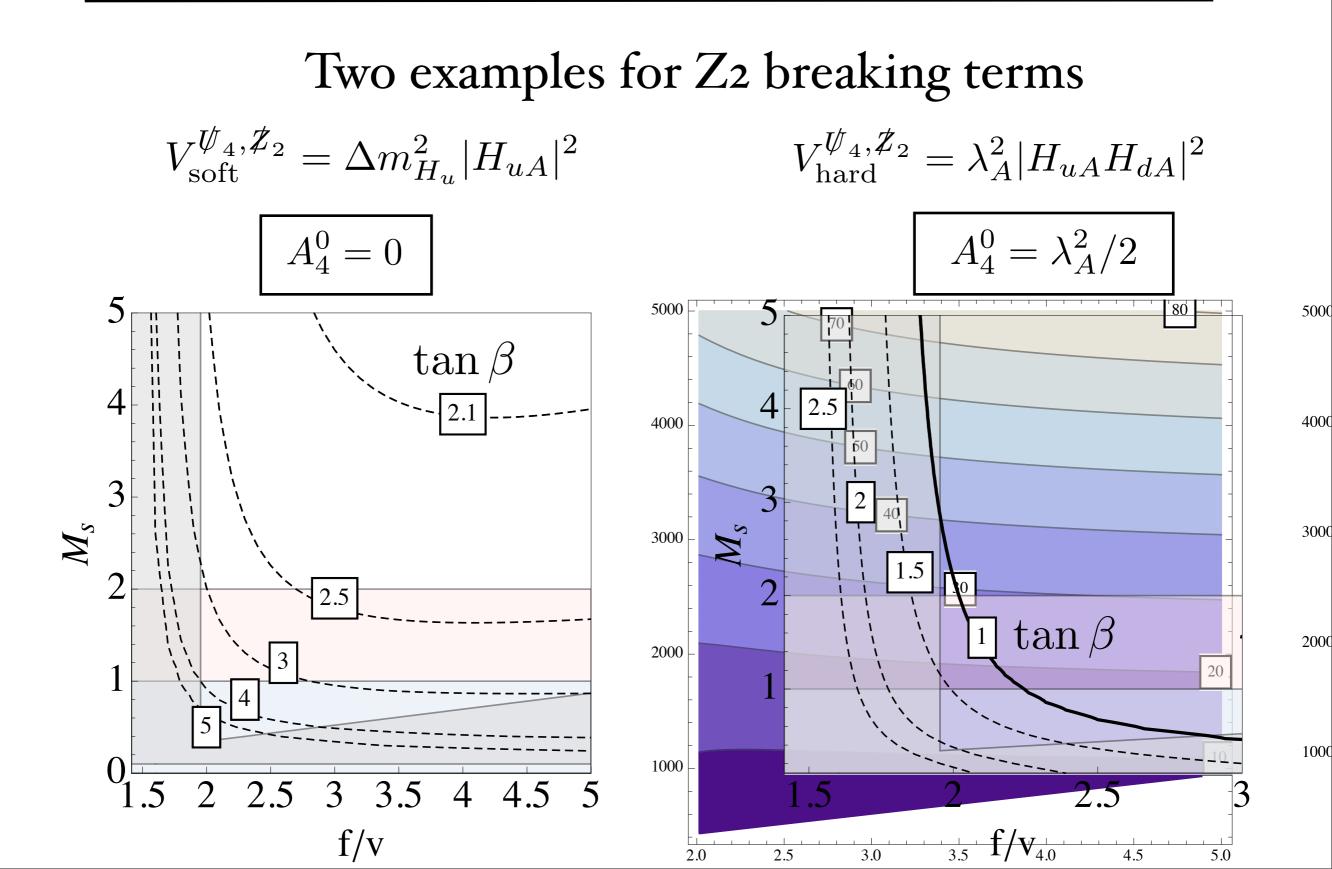
 $V^{U_4} = f^4 \left[\left(\cos^4 + \sin^4 \right) A_4 + \left(\cos^2 - \sin^2 \right) \Delta \right] \qquad \sin \equiv \sin \left(\frac{h}{\sqrt{2}f} \right)$ $Z_2 \text{ even: quartic} \qquad Z_2 \text{ odd}$ $\frac{v^2}{f^2} = \frac{1}{2} \left(\frac{A_4 + \Delta}{A_4} \right) \qquad m_h^2 = 8v^2 \left(1 - \frac{v^2}{f^2} \right) A_4$

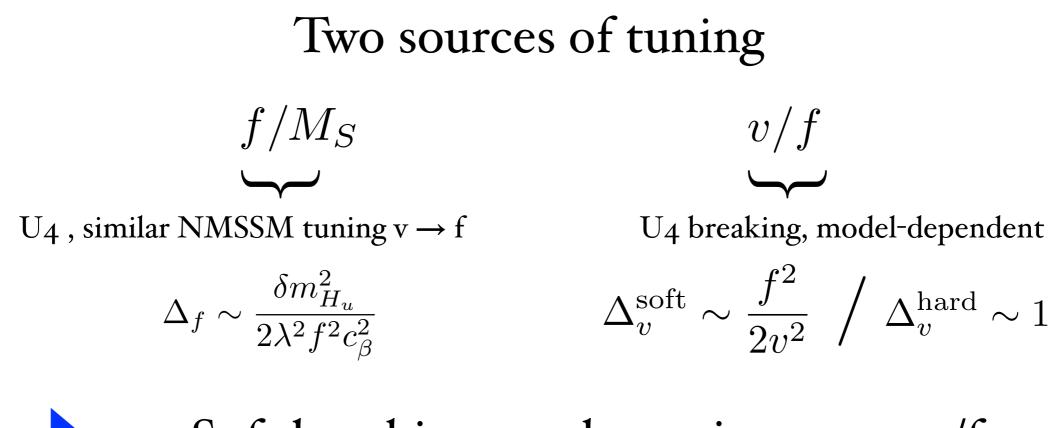

receive irreducible contributions from top/stop loops & tree-level D-term + model-dependent

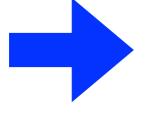
$$A_4 = A_4^{\rm D-term}(t_\beta) + A_4^{\rm 1-loop}(M_S, f) + A_4^0$$

$$\Delta = \Delta^{1-\text{loop}}(M_S, f) + \Delta^0 \approx -0.11$$

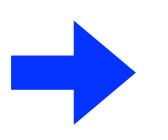
$$\underbrace{\sim}_{\text{small}}$$


Twin SUSY: EWSB

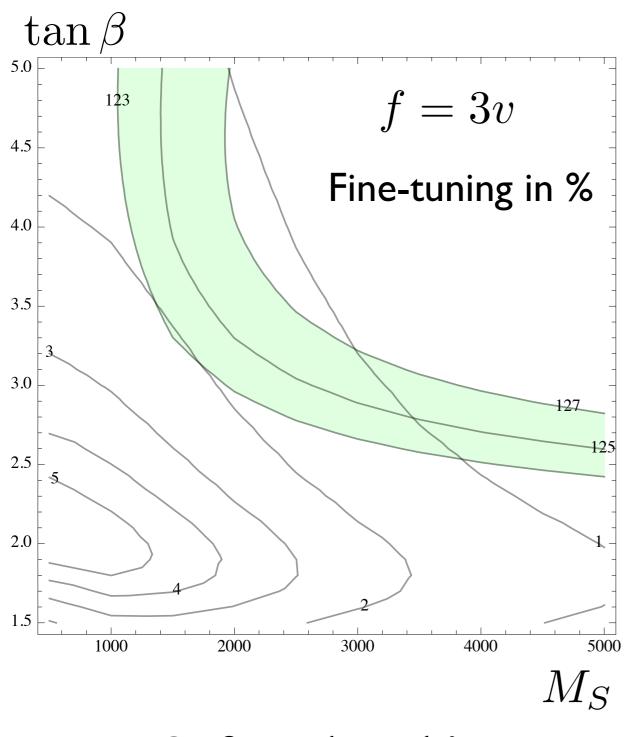

Upper bound on A4 from Higgs mass: grows with MS (stop contribution) and tanb (D-term)


Prefers **negative** A_4^0 but difficult to generate

Twin SUSY: Parameter Space



Twin SUSY: Fine-tuning



Soft breaking needs tuning to get v/f hierarchy: total tuning like NMSSM

Hard breaking gets naturally v/f hierarchy: total tuning better by factor 5-10 (PGB), but restricted parameter space

Twin SUSY: Numerics

Soft Z2 breaking

in progress... found points with $\tan\beta \approx 1.3$ $f \approx 4v$ $M_S \approx 1000 \,\mathrm{GeV}$ $m_h \approx 125 \,\mathrm{GeV}$ tuning $\approx (10 - 20)\%$ preliminary!

Hard Z₂ breaking

Summary

- Twin Higgs models can stabilize weak scale up to 5-10 TeV without colored top partners
- SUSY provides UV completion with calculable observables: Twin SUSY
- Many possibilities for Z₂ breaking, only few have been explored: systematic approach
- Particularly interesting are hard Z₂ breaking models, allow for natural v/f hierarchy

Backup

Twin SUSY: Stability

Radiative corrections from stop/top sector $W_{\text{Yuk}} = y_{tA}Q_AU_AH_A + y_{tB}Q_BU_BH_B$ Impose Z₂ invariance $y_{tA} = y_{tB} = y_t$ $\Delta V_{top} = -\frac{3}{16\pi^2} \left[y_t^2 \left(|H_A|^2 + |H_B|^2 \right) \Lambda^2 + \log \dots \right]$ $\Delta V_{stop} = +\frac{3}{16\pi^2} \left[y_t^2 \left(|H_A|^2 + |H_B|^2 \right) \Lambda^2 + \log \dots \right]$ SUSYtwin $\Delta V = \frac{3}{16\pi^2} \left[-2y_t^2 M_S^2 |\mathcal{H}_u|^2 \log \frac{\Lambda_{mess}^2}{M_S^2} + y_t^4 \left(|H_{uA}|^4 \log \frac{M_S^2}{m_{tA}^2} + |H_{uB}|^4 \log \frac{M_S^2}{m_{tB}^2} \right) \right]$ usual stop correction to $m_{H_u}^2$ generates PGB quartic and mass term $\delta f \sim M_S/4\pi$ $\delta m_h \sim f/4\pi$

Twin Higgs Phenomenology

• Dark sector couples only through Higgs portal

mixing angle v/f

• Primary signal from SM Higgs couplings

 $f/v \gtrsim 2.2$

Many DM candidates in Dark Sector

 τ_B, W_B, \ldots