Attitude law evolution

Vincent MORAND CNES 09/2015

- ⇒ Current situation: one pointing each day following B1 attitude law
- ▷ VT/MXT observation impossible during 48% of the mission due to earth occultation (over one year, 190 days of observation, 175 days of occultation)
- ⇒ Could we do more than one pointing/orbit to increase VT/MXT observation time?

- \Rightarrow A direction in the sky can be seen if :
 - 1. The angle w.r.t to Sun direction is >90°
 - 2. The angle w.r.t to Earth limb is $\geq 20^{\circ}$ (NB : Earth apparent angle is $\sim 68^{\circ}$)
 - 3. P/F constraints w.r.t Sun can be met (SUN in –Xs/+Z quarter of plane)

 \rightarrow We can demonstrate that 3. is OK whenever 1. is

- \Rightarrow Results are very sensitive to Earth guard angle:
 - \square Angle < 22° \rightarrow Direction perpendicular to the orbit plane can be seen continuously
 - ☑ Angle > 22° → No such directions with continuous observation
- ⇒ Results depend on date and initial Right Ascension of Ascending Node, that will be known only after launch

⇒ Angle between SUN and all directions in the sky (1 deg² pixels) at t0

 \Rightarrow Half of the sky can be observed when considering only Sun constraint(angle > 90°)

- ⇒ We are interested in the « useless » part of the orbit where we have Earth occultation when using B1 attitude (duration ~47 min)
- ⇒ We plot the observation durations we can have on this orbital arc for each pixel of the sky

- ⇒ We compute the results each day over 1 year
 - ☑ All the sky is observable
 - ☑ Maximal observation duration vary from 10 to 55 days

⇒ These durations does not take slew durations into account (yet, see next slides)

- ⇒ At any time it's easy to compute the angular gap with B1 pointing
- ⇒ For information we plot the minimum rotation angle necessary to get a given observation duration, for each day of the year

⇒ A profile slew_duration = f(slew_angle) is now needed

SAT_SV-SC-DF-036-SECM:

~ • • •		1	
Attitude Slew Requirement			
Xs slew	azimuth:±45°, elevation: ±45°	Xs	When GRB happening
In 5 min	100°	Space axis	Completing Slew
In 3 min	60°		& settle down in
In 8 min	180°	Xs	command time

!!! First basic approach to be confirmed!!!

$$t_{slew}(s) = 75 + 2.25 * \alpha(deg)$$

- ⇒ Option 1 : « maximizing » B1 observation time
 - ☑ Slew during Earth occultation time only
 - ☑ Observation duration of the new target is reduced by a duration ϵ [0, 2*s] (s = slew duration)
- ⇒ Option 2 : given observation time for the target
 - ☑ Slew before and after target observation, even out of Earth occultation
 - $\ensuremath{\boxdot}$ B1 observation duration is reduced
 - → Option 2 is not preferred

Observation durations taking slew manoeuver into account. Slews occur only during Earth occultation for B1 pointing

40.881

- 30.661

- 20.441

- 10.220

- 0.000

- ⇒ Goal is to observe the galactic plane +/- 7° over one year, with 1 pointing (assumed with 1 deg² of FOV) during Earth occultation for each orbit
 - ☑ 365 * 15 = 5475 targets
 - Selecting which target should be observed at which orbit is a complex programmatic problem. Here are two simple solutions that are not optimum (Images are animated gif, final results on next slide)

Red : area of interest Green : FOV (pointings...)

⇒ Final results with repartition of observing durations

- Almost complete coverage (97%)
- Total of 99 days of observation duration
- Total observation time goes 190 days to 289 days
 → Gain = 52 %

- « Complete » coverage
- Total of 55 days of observation duration
- Total observation time goes 190 days to 245days
 → Gain = 29 %

NB: the observation sequencing has not been optimized

- ⇒ This is only a geometrical analysis
 - ☑ TBC: slew duration
 - $\ensuremath{\boxtimes}$ Thermic aspects, power budget, memory... to be assessed
 - ☑ Moon constraint should be added?
- The slew shall be done during Earth occultation to minimize impact on B1 observation durations
- ⇒ Target choices is TBD by science
- ⇒ Examples of gain over 1 year
 - ✓ Cover 97% of galactic plane +/- 7°: Total observation time goes from 190 days to 289 days (+99 days) → Gain = 52 %
 - ✓ Cover 100% of galactic plane +/- 7°: Total observation time goes from 190 days to 245 days (+55 days) → Gain = 29 %
 - $\ensuremath{\boxdot}$ Optimum to be found if necessary

- ⇒ In order to promote the mission and to inform the scientific community we plan to write a SVOM white paper.
- ⇒ In order to prepare the first draft of this paper we plan to organize a workshop at Chamonix Mont-Blanc (Ecole des Houches) next year from April 10 to April 15.
- ⇒ The title of the workshop is: The Deep and Transient Universe in the SVOM Era: New Challenges and Opportunities.
- ⇒ This workshop will also be a great opportunity to gather the SVOM science community for the first time.
- ⇒ If you are interested please send an email to: <u>svom2016@gmail.com</u> before September 30
- ⇒ SVOM science meeting in Paris to prepare this workshop (end of November)