

Cherenkov Telescope Array: a production system prototype

Volker Beckmann

using heavily the slides provided by

L. Arrabito¹, C. Barbier², J. Bregeon¹, A. Haupt³, N. Neyroud² for the CTA Consortium

Francois Arago Centre

Distributed computing in astrophysics, FACe, December 10-11, 2015

Outlook:

- CTA in a nutshell
- CTA computing model:
 - Data volume
 - Data flow
 - Data processing
- CTA production system prototype:
 - Current MC simulations and Analysis
 - DIRAC for CTA
 - Resource usage: 2013-2015
- Future developments
- Conclusions

Big-Data tomorrow: CTA

Cherenkov Telescope Array: Ground based gamma-ray telescope

Big-Data tomorrow: CTA

- Ground based gamma-ray telescope
- A few 24m telescopes (20-100 GeV), Tb/s
- 10m-15m telescopes, 100 m spacing (100 GeV 10 TeV)
- Many small size telescopes >10 TeV
- 1200 members, 200 institutes in 29 countries
- First telescopes next year, first science data 2018

CTA in a nutshell

- CTA (Cherenkov Telescope Array) is the next generation instrument in VHE gamma-ray astronomy
- 2 arrays of 50-100 Cherenkov telescopes (North and South hemispheres)
- 10x sensitivity with respect to current experiments
- Consortium of ~1200 scientists in 32 countries
- Operate as an observatory
- Site locations decided for further negotiations this year:
 - North site: La Palma, Spain
 - South site: Paranal ESO, Chile
- Currently in 'Pre-construction' phase (2015-2022)
- Operations will last ~30 years

Scientific goals:

- Cosmic rays origins
- High Energy astrophysical phenomena
- Fundamental physics and cosmology

CTA Computing: data volume

Raw-data rate

CTA South: 5.4 GB/s

CTA North: 3.2 GB/s

1314 hours of observation per

year

Raw-data volume

- ~40 PB/year
- ~4 PB/year after reduction

Total volume

 ~27 PB/year including calibrations, reduced data and all copies

CTA Computing: data flow

CTA Computing: data processing

Reconstruction Pipeline shower reconstruction step

From raw-data to high level science data:

- Several complex pipelines (Calibration, Reconstruction, Analysis, MC, etc.)
- Assume 1 full re-processing per year

MC simulations and Analysis

- CTA is now in 'Pre-construction' phase
- Massive MC simulations and Analysis running for 3 years
 - o 'Prod2' (2013-2014)
 - Characterize all site candidates to host CTA telescopes to determine the one giving the best instrument response functions
 - 4.6 billion events generated for each site candidate, 2 different zenith angles and 3 telescope configurations
 - 8 full MC campaigns (5 sites for the South and 3 for the North)
 - 'Prod3' (2015) in progress:
 - For the 2 selected sites: study the different possible layouts of telescope arrays, pointing configurations, hardware configurations, etc.
 - 800 telescope positions, 7 telescope types, multiple possible layouts, 5 different scaling
 - Run 3 different Analysis chains on the simulated data
 - Each one processing about 500 TB and 1 M of files for 36 different configurations
- Computing is already a challenge!

MC simulations and Analysis

- Use of an existing and reliable e-Infrastructure: EGI grid
- Use of DIRAC for Workload and Data Management

CTA Virtual Organization:

- Active since 2008
- 19 EGI sites in 7 countries and 1 ARC site
- About 100 members

Resources:

- Dedicated storage:
 - Disk: 1.3 PB in 6 sites:
 CC-IN2P3, CNAF, CYFRONET, DESY, GRIF, LAPP
 - o Tape: 400 TB in 3 sites
- CPU: 8000 cores available on average

DIRAC for CTA:

- Dedicated DIRAC instance composed of 4 main servers at CC-IN2P3 and PIC
- Several DIRAC Systems in use
- CTA-DIRAC software extension

MC simulations and Analysis

Computing Model:

- Use of CTA-DIRAC instance to access grid resources
- MC simulation uses CPU resources of all 20 grid sites supporting the CTA VO
- Output Data are stored at 6 main SE
- MC Analysis takes place at the 6 sites where MC data are stored

Computing Operations (small team of people):

- Receive production requests from MC WP (nb of events to be generated, sw to install, etc.)
- Adjust the requests according to the available resources
- Negotiate resources with grid sites on a yearly basis
- Run the productions and perform data management operations (removal of obsolete datasets, data migration, etc.)
- Support users to run their private MC productions and analysis
- DIRAC servers administration
- Development of CTA-DIRAC extension

DIRAC for CTA: main Systems in use

- Workload Management System
 - Job brokering and submission (pilot mechanism)
 - Integration of hetereogenous resources (CREAM, ARC)
 - Central management of CTA VO policies
- Data Management System
 - All data operations (download, upload, replication, removal)
 - Use of the DIRAC File Catalog (DFC) as Replica and Metadata catalog
- Transformation System
 - Used by production team to handle 'repetitive' work (many identical tasks with a varying parameter), i.e. MC productions, MC Analysis, data management operations (bulk removal, replication, etc.)

DIRAC for CTA: DIRAC File Catalog

- In use since 2012 in parallel with LFC. Full migration to DFC in summer 2015
- More than 21 M of replicas registered
- About 10 meta-data defined to characterize MC datasets

Query example:

cta-prod3-query --site=Paranal -particle=gamma --tel_sim_prog=simtel
--array_layout=hex --phiP=180
--thetaP=20 --outputType=Data

Typical queries return several hundreds of thousands of files

DFC web interface

DIRAC for CTA: Transformation System

Transformation System Architecture

- The Production Manager defines the transformations with meta-data conditions and 'plugins'
- InputData Agent queries the DFC to obtain files to be 'transformed'
- Plugins group files into tasks according to desired criteria
- Tasks are created and submitted to the Workload or Request Management System

Transformation Monitoring

Resource usage: 2013-2015

- Use of about 20 grid sites
- 5000-8000 concurrent jobs for several weeks
- Users analysis also running in parallel (private simulations, analysis)
- More than 7.7 M jobs executed

Resource usage: 2013-2015

- About 2.6 PB processed (MC Analysis)
- Throughput of 400-800 MB/s during 'prod3'

Future developments

- Until now, we have been using almost all DIRAC functionalities
- For long term operations CTA is developing several systems:
 - Archive system to store and manage CTA data
 - Pipeline framework to handle all CTA applications
 - Data model to define the whole meta-data structure of CTA data
 - Science gateway for end-users data access
 - O DIRAC will be used for the Workload and Production Management

Future developments:

- Develop interfaces between DIRAC and the other CTA systems
- Improvement of the DIRAC Transformation System toward a fully datadriven system (next slide)
- Improve CTA-DIRAC hardware setup

Toward a fully data-driven Transformation System

Developments in progress:

- When new files are registered, a filter based on meta-data is applied to send them on the fly to their matching transformation
- No need anymore to perform heavy queries of the Archive

Improve CTA-DIRAC hardware setup

- DIRAC is based on a Service Oriented Architecture
- Each DIRAC System is composed of Services, Agents and DBs
- CTA-DIRAC instance is a rather modest installation, composed of:
 - 3 core servers:
 - 1 server running all Services (except DM) and a few Agents (4 cores)
 - 1 server running all Agents except TS (2 cores)
 - 1 server running the DataManagement System and Transformation Agents (16 cores)
 - 2 MySQL servers:
 - 1 server hosting all DBs except FileCatalogDB
 - 1 server hosting the FileCatalogDB
 - 1 web server
- Observed high load on the core servers when running several 'productions' in parallel
- Need to add more servers, but also optimize the component distribution on the servers

Conclusions

- CTA will produce about 27 PB/year and it will operate for ~30 years
- A production system prototype based on DIRAC has been developed for MC simulation productions:
 - Required minimal development of a CTA-DIRAC extension
 - Minimal setup and maintenance of the instance running all the components, mostly the work of 1 person with help of DIRAC team and sys admins upon request
- Successfully used during last 3 years for massive MC simulations and analysis:
 - > 1.6 PB produced
 - ~ 2.6 PB processed
 - > 20 M files registered in the Catalog
- Future developments:
 - Improve production system for real data processing pipeline
 - Build interfaces between DIRAC and other CTA systems (Archive, Pipeline, etc.)
 - Further develop DIRAC Transformation System toward a fully datadriven system