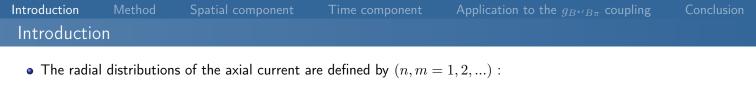
Radial distributions of the axial density and the $B^{*\prime}B\pi$ coupling

Antoine Gérardin


In collaboration with Benoit Blossier

1

September 25, 2015 - Institut Henri Poincaré

$$f_{\gamma_{\mu}\gamma_{5}}^{(mn)}(\vec{r}) = \langle B_{m} | A_{\mu}(\vec{r}) | B_{n}^{*}(\lambda) \rangle , \quad B_{n} = n^{\text{th}} \text{ radial excitation}$$

$$\begin{array}{c} \mathcal{A}_{\mu}(\vec{x} + \vec{r}, t_{1}) \\ \hline t_{1} \\ t_{1} \\ \hline t_{$$

- We work in the static limit of HQET: the heavy quark (Q) is static
- Ground states (B, B^*) and excited states $(B', B^{*'})$ analysis : n, m = 1, 2
- Motivations
 - ightarrow The heavy-light meson is a good starting point, we can also compare our results with quark models
 - ightarrow Extract some excited state properties on the lattice (not only the spectrum but also the couplings)
 - \rightarrow In particular, the radial distributions are related to form factors via a Fourier transform [Becirevic et al. (2012)] (application to the $g_{B^*B\pi}$ and $g_{B^{*'}B\pi}$ couplings)
 - \rightarrow From a lattice point of view : insights on volume effects

Introduction	Method	Spatial component	Time component	Application to t	he $g_{B^{st}'B\pi}$ coupling	Conclusion
Computat	tion					
 Lattice s 	setup:					
-	Two degener	ated dynamical quarks	$(N_f=2, m_u=m_d)$			
-	O(a) improve	ed Wilson-Clover Fermi	ions (to reduce lattice	artefacts)	CLS	
-	3 lattice space	cings a :				
		(0.048, 0.065, 0.075)) < 0.1 fm		base	d
-	pion masses	in the range [280 MeV,	440 MeV]			
• We need		the following two and t $C^{(3)}_{\gamma_{\mu}\gamma_{5}}(t,t_{1};\vec{r}) = \langle \mathcal{P} \\ C^{(2)}_{\mathcal{P}}(t) = \sum_{\vec{x}} \langle \mathcal{P}(t,\vec{x}) \rangle$	$\mathcal{P}(t; ec{x}) \mathcal{A}_{\mu}(t_1; ec{x} + ec{r}) \mathcal{V}_{\mu}(t_2; ec{x} + ec{r}) \mathcal{V}_{\mu}(t_2;$	$\mathcal{V}_k^\dagger(0;ec x) angle,$		

• $\mathcal{P}(t, \vec{x})$ and $\mathcal{V}_k(t, \vec{x})$ are interpolating operators with the quantum numbers of a pseudoscalar and vector mesons respectively

$$\mathcal{R}_{\gamma_{\mu}\gamma_{5}}(t,t_{1},\vec{r}) = \frac{C_{\gamma_{\mu}\gamma_{5}}^{(3)}(t,t_{1};\vec{r})}{\left(C_{\mathcal{P}}^{(2)}(t) \ C_{\mathcal{V}}^{(2)}(t)\right)^{1/2}} \xrightarrow{t \gg t_{1} \gg 1} f_{\gamma_{\mu}\gamma_{5}}^{(11)}(\vec{r}) = \sum_{\lambda} \langle B(\vec{p}) | A_{\mu}(\vec{r}) | B^{*}(\vec{p}\,',\lambda) \rangle \,\epsilon_{i}^{*}(\vec{p}\,',\lambda)$$

 \longrightarrow One obtains the ground state distribution (B and B^*) at large (euclidean) time

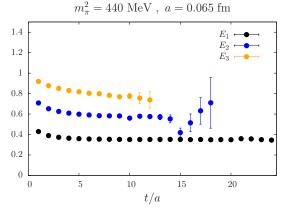
3

LATTICE 15 - Radial distributions of the axial density and the $B^{*\prime}B\pi$ coupling

Introduction Method Spatial component Time component Application to the $g_{B^{*'}B\pi}$ coupling Conclusion Excited states contribution

How to isolate the contribution from excited states ? (In particular $\langle B|A_{\mu}(\vec{r})|B^{*\prime}(\lambda)\rangle$)

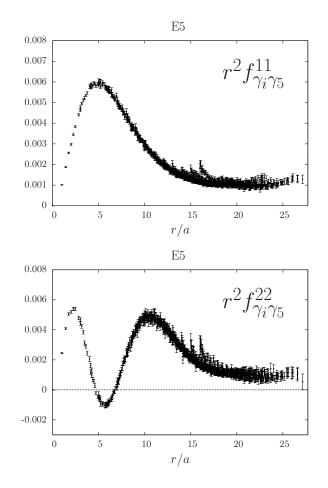
- Excited state contributions are exponentially suppressed compared to the ground state contribution
- Solution: use different interpolating operators $\mathcal{P}^{(i)}$ and $\mathcal{V}_k^{(j)}$ with different overlaps with the excited states \longrightarrow matrix of correlators : $C_{ii}^{(2)}(t)$
 - \longrightarrow generalized eigenvalues and eigenvectors $C^{(2)}(t) v_n(t,t_0) = \lambda_n(t,t_0) C^{(2)}(t_0) v_n(t,t_0)$
- This allows to disentangle the contribution from the ground state and from the different exited states

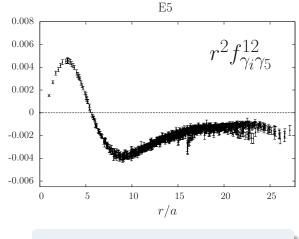

 —> Generalized eigenvalues and eigenvectors of the two-point correlation function
- Exemple : spectrum of the heavy-light mesons in the static limit of HQET

$$E_n^{\text{eff}}(t) = \log\left(\frac{\lambda_n(t)}{\lambda_n(t+1)}\right) \xrightarrow[t\gg1]{} E_r$$

- \longrightarrow The mass are extracted from the plateaus
- $\longrightarrow B$ and B^* are degenerate (E_1)

4


 $\longrightarrow B'$ and $B^{*'}$ are the first radial excitations (E_2)



• Matrix elements : (Generalized eigenvalue problem) GEVP [Bulava et. al, '11] [Blossier et. al, '13]

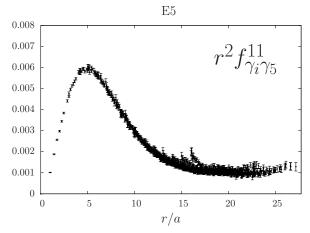
$$\mathcal{R}_{mn}^{\text{GEVP}}(t,t_1;\vec{r}) = f_{\gamma_{\mu}\gamma_5}^{(mn)}(\vec{r}) + \mathcal{O}\left(e^{-\Delta_{N+1,m}t_2}, e^{-\Delta_{N+1,n}t_1}\right) \quad , \quad \Delta_{N+1,n} = E_{N+1} - E_n$$

LATTICE 15 - Radial distributions of the axial density and the $B^{*'}B\pi$ coupling

$$f_{\gamma_i\gamma_5}^{(mn)}(\vec{r}) = \langle B_m | A_i(\vec{r}) | B_n^*(\lambda) \rangle$$

• E5 : a = 0.065 fm and $m_{\pi} = 440 \text{ MeV}$

- #r = 969 2925 for L/a = 32 48 respectively
- exponential fall-off
- node for excited states
- "fishbone" structure at large radii
- preliminary results


Introduction	Method	Spatial component	Time component	Application to the $g_{B^{st'}B\pi}$ coupling	Conclusion
Volume ef	fects				
Lattice with p	eriodic boun	dary conditions in space	directions [Negel	e. '94]	

$$a^3 f_{\gamma_i \gamma_5}^{\text{lat}}(\vec{r}) = \sum_{\vec{n}} a^3 \widetilde{f}_{\gamma_i \gamma_5}(\vec{r} + \vec{n}L) \quad , \quad n_i \in \mathbb{Z} \,,$$

- L is the size of the lattice
- a is the lattice spacing

Two kinds of volume effects are expected:

- $f_{\gamma_i\gamma_5}^{\text{lat}}(\vec{r})$ is the sum of all periodic images contributions : $\vec{n} = (0,0,0), (0,0,1), \dots$
- $\tilde{f}_{\gamma_i\gamma_5}(\vec{r})$ can still differs from the infinite volume distribution $f_{\gamma_i\gamma_5}(\vec{r})$ due to interactions with periodic images

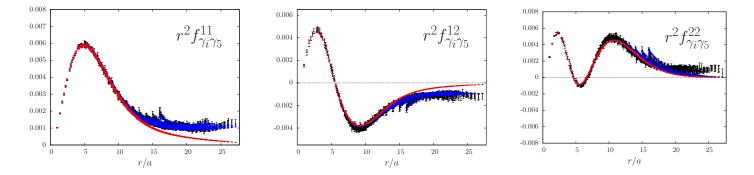
•
$$L/a = 32$$

• $r^2 f^{11}_{\gamma_i \gamma_5}(\vec{r}) \neq 0$ for $r = L/2 \implies$ overlap of the tails
 \Rightarrow "fishbone" structure

- We neglect interactions with periodic images $\Rightarrow \tilde{f}_{\gamma_i\gamma_5}(\vec{r}) \approx f_{\gamma_i\gamma_5}(\vec{r}) \quad \text{(even in the overlap region)}$
- Typically volume effect decrease as $\mathcal{O}(e^{-m_\pi L})$ and we always have $Lm_\pi>4$

To remove these volume effects, we assume a functional form and fit the data with

$$f_{\gamma_i \gamma_5}^{(mn)}(\vec{r}) = P_{mn}(r) r^{\beta} \exp(-r/r_0)$$

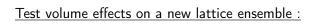

where $P_{mn}(r)$ is a polynomial function

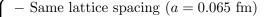
6

Antoine Gérardin

LATTICE 15 - Radial distributions of the axial density and the $B^{*'}B\pi$ coupling

• Does not affect the computation of the couplings g_{mn} or form factors at discrete lattice momenta (as long as the distribution vanishes for r > L)

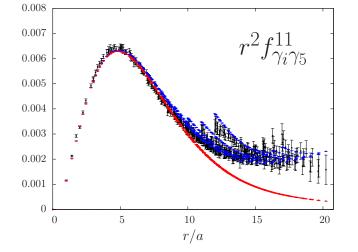

$$g = \sum_{\vec{r}} f_{\gamma_i \gamma_5}^{\text{lat}}(\vec{r}) = \int d^3 r f_{\gamma_i \gamma_5}(\vec{r})$$


 \rightarrow the contribution coming from periodic images compensates exactly the missing part of the tail for r > L/2.

• However, it affects quantities like $\langle r^2 \rangle_A$ or form factors at non-lattice momenta

$$\langle r^2 \rangle_{\Gamma} = \frac{\int_0^\infty \,\mathrm{d}r \, r^4 \, f_{\Gamma}^{(11)}(r)}{\int_0^\infty \,\mathrm{d}r \, r^2 \, f_{\Gamma}^{(11)}(r)}$$

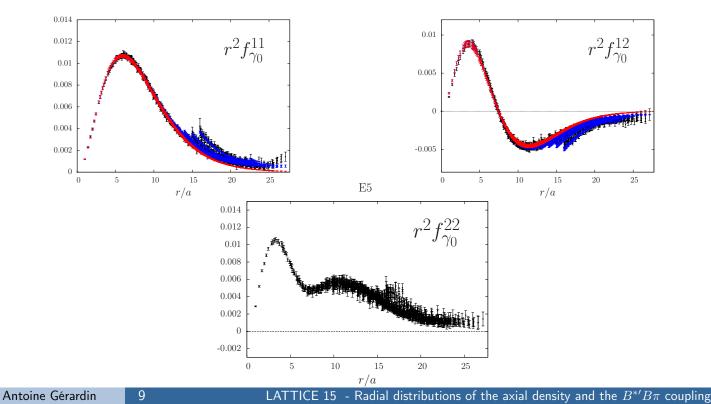
• We have made the assumption that the tail of the distribution is not distorted by interactions



- Same lattice spacing (a = 0.065 fm)
 Same pion mass (m_{\pi} = 440 MeV)
 But smaller volume : L/a = 24 instead of 32

- fit the raw data of the smaller volume ensemble (L/a = 24) using the same fit parameters (L/a = 32)
- the fit (blue points) still matches the data of the smaller ensemble (in black)

 \longrightarrow the deformation of the tail is negligible at our level of precision



Introduction Method Spatial component Time component Application to the $g_{B^{*'}B\pi}$ coupling Conclusion Vector distributions and the renormalization constant Z_V

- We would like to check whether or not we are able to safely isolate the first excited state
- Therefore, we have computed the vector (or charge) radial distributions. Similarly, they are defined by

$$f_{\gamma_0}^{(mn)}(\vec{r}) = \langle B_m(\vec{p}) | \left(\overline{\psi}_l \gamma_0 \psi_l \right) (\vec{r}) | B_n(\vec{p}') \rangle \quad , \quad (\gamma_\mu \gamma_5 \leftrightarrow \gamma_0)$$

• Results for E5 ($m_{\pi} = 440 \text{ MeV}, a = 0.065 \text{ fm}$)

Introduction Method Spatial component Time component Application to the $g_{B^*/B\pi}$ coupling Conclusion

Vector distributions and the renormalization constant Z_V

 $f_{\gamma_0}^{(mn)}(\vec{r}) = \langle B_m(\vec{p}) | \left(\overline{\psi}_l \gamma_0 \psi_l \right) (\vec{r}) | B_n(\vec{p}') \rangle$

 $\bullet\,$ Sum the vector radial distributions over all values of \vec{r} :

$c_{mn} = \sum f_{\gamma_0}^{(mn)}(\vec{r})$	mn	11	22	12	23
\vec{r}	c_{mn}	1.311(17)	1.212(52)	0.015(32)	-0.010(35)

- At finite lattice spacing $(a \neq 0)$ the vector current conservation is broken
- One defines the renormalization constant Z_V to restore the symmetry : $Z_V c_{11} = 1$
- With our data :

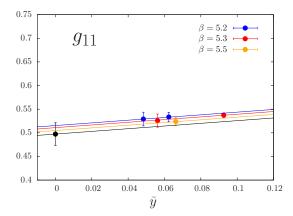
$$Z_V = 0.763(12)$$
 at $\beta = 5.3$ $(a = 0.065 \text{ fm})$

 \rightarrow Compatible with the non-perturbative estimate $Z_V = 0.750(5)$ from the ALPHA Collaboration

[DellaMorte, '05] [Fritzsch, '12]

- $ightarrow Z_V \, c_{22}$ is also very close to one
- $ightarrow c_{12}$ and c_{23} are compatible with zero: we safely isolate the ground state and first excited state
- The results are compatible with the interpretation of an excited state

Introduction Method Spatial component Time component Application to the $g_{B^{*'}B\pi}$ coupling Conclusion Sum rules : g_{11} , g_{12} and g_{22}


The sum over r of the spatial component of the radial distributions gives the form factor at $q^2 = q_{max}^2 = m_{B_m^*} - m_{B_n}$

$$g_{mn} = \sum_{\vec{r}} f^{(mn)}_{\gamma_i \gamma_5}(\vec{r}) = \langle B^0_m(\vec{0}) | A_k(0) | B^{*+}_n(\vec{0}, \lambda) \rangle$$

The renormalized $\mathcal{O}(a)$ -improved couplings are then given by

$$\overline{g}_{mn} = Z_A (1 + b_A a m_q) g_{mn}$$

 \rightarrow Z_A is the light axial vector current renormalisation constant [DellaMorte et. al, '08] [Fritzsch et. al, '12] \rightarrow b_A is an improvement coefficient

$$\tilde{y}=m_\pi^2/(8\pi^2 f_\pi^2)$$

Extrapolations to the physical point :

(preliminary, only naive extrapolations)

• The results are perfectly compatible with previous lattice calculations [Bernardoni et. al, '14] [Blossier et. al, '13] • $g_{11} = \hat{g}$ is related to the $g_{B^*B\pi}$ coupling in the static limit $(q_{\max}^2 \approx 0)$

• However, for g_{12} we obtain the result at $q^2_{\max} = m_{B^{*\prime}} - m_B \neq 0$

Antoine Gérardin

• First moment of the ground state radial distributions (square radius)

$$\langle r^2 \rangle_{\Gamma} = \frac{\int_0^\infty \mathrm{d}r \, r^4 \, f_{\Gamma}^{(11)}(r)}{\int_0^\infty \mathrm{d}r \, r^2 \, f_{\Gamma}^{(11)}(r)} \qquad \begin{array}{l} \Gamma = 1 & : \quad \langle r^2 \rangle_M = 0.215(9) \, \mathrm{fm}^2 \\ \Gamma = \gamma_0 & : \quad \langle r^2 \rangle_C = 0.345(6) \, \mathrm{fm}^2 \\ \Gamma = \gamma_i \gamma_5 & : \quad \langle r^2 \rangle_A = 0.254(6) \, \mathrm{fm}^2 \end{array} \tag{preliminary}$$

$$\langle r^2 \rangle_M < \langle r^2 \rangle_A < \langle r^2 \rangle_C$$

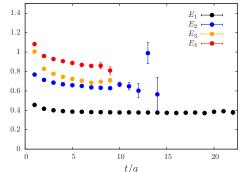
- $g_{12} \ll g_{11} = \hat{g}$: it can be understood by the presence of a node for the excited state
- Position of the node for $f^{(12)}_{\gamma_i\gamma_5}(\vec{r}) = \langle B|A_i(\vec{r})|B^{*\prime}(\lambda) \rangle$

	a = 0.0	$075~\mathrm{fm}$	a = 0.	a = 0.048 fm	
m_{π}	$330 { m MeV}$	$280~{\rm MeV}$	440 MeV	$310 { m MeV}$	$340 { m MeV}$
r_n [fm]	0.371(6)	0.369(6)	0.369(4)	0.371(3)	0.358(4)

 \rightarrow no dependance on the lattice spacing / pion mass at our level of precision

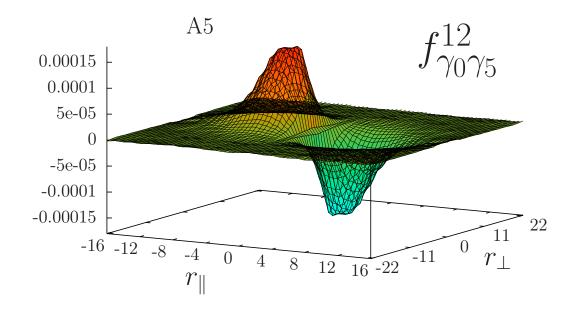
hod Spatial component Time compone

Multihadron thresholds


• Within our lattice setup, the radial excitation of the vector meson $(B^{*'})$ lies near the multiparticles threshold $(B_1^*\pi)$ where B_1^* represents the axial B meson.

$a \ (fm)$	$m_{\pi} \; ({\rm MeV})$	$a(m_{B^{*\prime}}-m_B)$	$a(m_{B_1^*} - m_B + m_\pi)$
0.075	330	0.253(7)	0.281(4)
	280	0.235(8)	0.248(4)
0.065	440	0.225(10)	0.278(6)
	310	0.213(11)	0.233(3)
0.048	340	0.166(9)	0.176(3)

The mass of the axial B meson in the static limit is extracted from our previous study [Blossier et al. (2014)]


We are always bellow threshold but the decay is potentially dangerous

- Our interpolating operators (V^(j)_k) couple (in principle) to all states with the same quantum numbers
 → so we could couple to this state.
- However, the position of the node is remarkably stable and does not depend on the pion mass contrary to what would be expected in the case of a mixing with the multiparticles states.
- Using more interpolating operators (with better overlap to the multi-particle state), it seems that we are able to disentangle the two states (spectrum)
- $\bullet\,$ We are currently analyzing the corresponding radial distributions $\ldots\,$

- $f^{(12)}_{\gamma_0\gamma_5}(\vec{r}) = \sum_{\lambda} \langle B(\vec{p}) | A_0(\vec{r}) | B^{*\prime}(\vec{p}\,',\lambda) \rangle \,\epsilon_i^*(\vec{p}\,',\lambda)$ • The time component is given by
- The distribution is odd with respect to r_i (*i* is the direction of the polarisation vector)
- The raw data are averaged over the plane orthogonal to the direction *i*

• Odd with respect to $r_i \Rightarrow \langle B(p)|A^0|B^{*'}(p',\lambda)\rangle = \sum_{\vec{r}} f_{\gamma_0\gamma_5}^{(12)}(\vec{r}) = 0$ as expected from the form factor decomposition in the zero recoil confiration (static heavy quarks)

- The $g_{B^{*'}B\pi}$ coupling is a coupling involving an excited state
- It is defined by the following on-shell matrix element

$$\langle B(p') \pi^+(q) | B^{*\prime}(p', \epsilon^{(\lambda)}) \rangle = -g_{B^{*\prime}B\pi} \times q_\mu \epsilon^\mu(p')$$
Pseudoscalar *B* meson
Radially excited vector *B*^{*'} meson

• Using the LSZ reduction and the PCAC relation, we are left with the following matrix element which can be computed on the lattice:

$$q^{\mu} \langle B^{0}(p) | A_{\mu}(0) | B^{*'+}(p+q) \rangle = g_{B^{*'}B\pi} (\epsilon \cdot q) \times \frac{f_{\pi}m_{\pi}^{2}}{m_{\pi}^{2} - q^{2}} + \dots$$

• We would like to compute $q^{\mu}\,\langle B^0(p)|A_{\mu}(0)|B^{*\prime+}(p+q)\rangle$ as $q^2\to 0$ (chiral limit)

- On the lattice with static heavy quarks: zero recoil kinematic configuration $(\vec{p} = \vec{p}' = \vec{0})$
 - \rightarrow Simulations correspond to $q^2 = q_{\max}^2 = (m_{B^{*\prime}} m_B)^2 \neq 0$ (far from the chiral limit)
 - \rightarrow One should extrapolate the form factor to $q^2=0$
- This can be done by taking the Fourier transform of the radial distribution [Becirevic et al. (2012)]
- Requires the knowledge of the spatial component $f_{\gamma_i\gamma_5}^{(12)}(\vec{r})$ but also of the time component $f_{\gamma_0\gamma_5}^{(12)}(\vec{r})$

Introduction	Method	Spatial component	Time component	Application to the $g_{B^{st'}B\pi}$ coupling	Conclusion
Conclusion					

- We have computed the radial distributions of the axial vector density for the ground state and the first excited state
 - \longrightarrow Heavy-light system in the static limit
 - \longrightarrow We have both the spatial and the time component
 - \longrightarrow We have five lattice ensembles to study discretization and quark mass effects
 - \longrightarrow Volume effects seems negligible at our level of precision
- We are potentially near the two-body decay threshold
 - \longrightarrow the position of the node is stable

- \longrightarrow we are using a larger basis to isolate the two contributions
- Results are still preliminary
- The next step is to compute the $g_{B^{*'}B\pi}$ coupling at $q^2 = 0$ (Fourier transform of the distribution)

Introduction	Method	Spatial component	Time component	Application to the $g_{B^{st}'B\pi}$ coupling	Conclusion
Conclusion					

- We have computed the radial distributions of the axial vector density for the ground state and the first excited state
 - \longrightarrow Heavy-light system in the static limit
 - \longrightarrow We have both the spatial and the time component
 - \longrightarrow We have five lattice ensembles to study discretization and quark mass effects
 - \longrightarrow Volume effects seems negligible at our level of precision
- We are potentially near the two-body decay threshold
 - \longrightarrow the position of the node is stable

- \longrightarrow we are using a larger basis to isolate the two contributions
- Results are still preliminary
- The next step is to compute the $g_{B^{*'}B\pi}$ coupling at $q^2 = 0$ (Fourier transform of the distribution)

Thank you