

Higgs and Z boson rare decays in quarkonium + photon

K. Nikolopoulos University of Birmingham

New Possibilities in Physics of Quarkonia 24th September 2015, Institut Henri Poincaré, France

UNIVERSITY^{OF} BIRMINGHAM

This project has received funding from the European Union's 7th Framework Programme for research, technological development and demonstration under grant agreement no 334034 (EWSB)

The Standard Model Higgs boson

 \rightarrow Unification of electromagnetic and weak interactions through SU(2)_L \otimes U(1)_Y local gauge symmetry; massless carriers

 \rightarrow Symmetry spontaneously broken - non-zero VEV of the Higgs field

 \rightarrow Three degrees of freedom of Higgs field \rightarrow longitudinal polarizations of the vector bosons [Mod.Phys.Lett. A29 (2014) 1450046], fourth is the Higgs boson.

•H→VV defined by symmetry breaking

•H→ffbar is ad hoc Yukawa coupling∝mf

[Phys.Rev.Lett. 19 (1967) 1264]

G. S. Guralnik,[†] C. R. Hagen,[‡] and T. W. B. Kibble Department of Physics, Imperial College, London, England (Received 12 October 1964)

BUT the Yukawa couplings are ad hoc:
 BSM scenarios predict enhanced Yukawa couplings
 Unitarity bounds (through EFT) for fermion mass generation scale (1st/2nd gen) Λ<20TeV Λ ~ √
 [Phys. Rev. Lett. 59, 2405 (1987); Phys.Rev. D71 (2005) 093009]

The Higgs boson, was discovered in July 2012, about 115 years after the electron!

K. Nikolopoulos

Higgs boson rare decays

^M 2

 m_{f}

SM Higgs boson production and decay at the LHC

The Standard Model Higgs boson

ATLAS-CMS Higgs boson mass combination; 0.19% precision

K. Nikolopoulos

Higgs boson and precision electroweak observables

Common coupling scaling for all Fermions (κ_F) and for all Bosons (k_V); no BSM contributions

Global EW fit still more precise for κ_V than Higgs boson measurements κ_V >1 preferred (many BSM scenarios require κ_V <1) Global EW fit has no effect on determination of κ_F

 $\int_{V}^{\Lambda} = \sqrt{\frac{1}{F} \times \frac{1}{V}}$ rimental information on Yukawa couplings essential to fully characterize the observed Higgs boson!

Yukawa couplings so far...

 \rightarrow Currently, with the exception of h \rightarrow tt, no conclusive direct evidence for h \rightarrow ffbar \rightarrow Indications for h \rightarrow bb and tth, to be followed up in LHC Run II

 \rightarrow Indirectly; Higgs boson should be coupling to top-quark in the gluon fusion loop

Charm-quark Yukawa coupling

Recent substantial activity on probing the charm-quark Yukawa coupling at the LHC. Two lines of attack (non-exhaustive list of references): \rightarrow Charm-tagging either at decays h \rightarrow ccbar or production pp \rightarrow hc [Phys.Rev. D89 (2014) 3, 033014; Phys.Rev. D92 (2015) 033016, arXiv:1507.0291]

\rightarrow Exclusive decays h \rightarrow Q γ

[Phys.Lett. B82 (1979) 411; Phys.Rev. D27 (1983) 2762; Yad.Fiz. 46, 864 (1987); Phys.Rev. D88 (2013) 053003; Phys.Rev. D90 (2014) 113010, JHEP 1508 (2015) 012]

These searches are sensitive to BSM physics [arXiv:1508.01501, arXiv:1504.04022, Phys. Rev. D 80, 076002, Phys. Lett. B665 (2008) 79]

Charm Tagging

One may "re-interpret" the h \rightarrow bbbar search for anomalous h→ccbar production Z \mathcal{C} \rightarrow In the SM BR(h \rightarrow ccbar)/BR(h \rightarrow bbbar) ~ 5.1% \rightarrow Enhancement Y_c: \uparrow BR(h \rightarrow ccbar), \downarrow BR(h \rightarrow bbbar) [through \uparrow \Gamma_h] \rightarrow Constrains only a linear combination of μ_b and μ_c W \rightarrow Need multiple b-tagging points $\mu_{b} = \frac{\sigma \operatorname{BR}_{b\bar{b}}}{\sigma_{\operatorname{SM}} \operatorname{BR}_{b\bar{b}}^{\operatorname{SM}}} \to \frac{\sigma \operatorname{BR}_{b\bar{b}} \epsilon_{b_{1}} \epsilon_{b_{2}} + \sigma \operatorname{BR}_{c\bar{c}} \epsilon_{c_{1}} \epsilon_{c_{2}}}{\sigma_{\operatorname{SM}} \operatorname{BR}_{b\bar{b}}^{\operatorname{SM}} \epsilon_{b_{1}} \epsilon_{b_{2}}}$ $= \mu_b + \frac{\mathrm{BR}_{c\bar{c}}^{\mathrm{SM}}}{\mathrm{BR}_{\iota\bar{\iota}}^{\mathrm{SM}}} \frac{\epsilon_{c_1}\epsilon_{c_2}}{\epsilon_{b_1}\epsilon_{b_2}} \ \mu_c \,,$ $\mu_c = 95^{+90(175)}_{-95(180)}$ at 68.3(95)% CL. $5fb^{-1}(7TeV)+20fb^{-1}(8TeV)$ c y_c hStat.+Monte Carlo Error \rightarrow Extracting info about Yukawa couplings: 5fb⁻¹(7TeV)+20fb⁻¹(8TeV) for new production modes h \bar{s}/\bar{c} Stat.+Monte Carlo Error $\kappa_c \lesssim 234$ at 95% CL, $\overline{s}/\overline{c}$ μ_b \rightarrow No detailed experimental analysis performed yet! 0 -20068.3% [Phy -1 **UNIVERSITY**OF K. Sep 24th, 2015 : decays (e) (c) BIRMINGHAM o

Charm Tagging

To resolve the two contributions improved c-tagging is needed

 \rightarrow ideally completely separate b- and c-jets

Future H→ccbar searches will benefit from dedicated c-tagging (ATL-PHYS-PUB-2015-001), already applied in ATLAS scalar-charm search. [Phys.Rev.Lett. 114 (2015) 161801]

However:

- complicated analysis with large QCD backgrounds
- signal sits on top of large (×20) h→bbbar "background"
- sensitivity to systematics of b/c-tagging efficiency
- need dedicated simulations for decay and production

Exclusive Decays $h \rightarrow Q \gamma$

Exclusive decays lead to distinct experimental signatures \rightarrow High-pT quarkonium back-to-back with a high-pT photon.

Indirect amplitude: significant contribution, larger than direct amplitude Destructive interference between the two \rightarrow resolve coupling sign-ambiguity $\Gamma(H \rightarrow J/\psi + \gamma) = |(1 - 0.2) - (1.04 \pm 0.14)\kappa_c|^2 \times 10^{-10} \text{ GeV}$ Phys.Rev. D90 (2014) 11, 113010 $H \rightarrow H(h \rightarrow \psi \gamma) = (2.95 \pm 0.07_{f_{J/\psi}} \pm 0.06_{\text{direct}} \pm 0.14_{h\rightarrow\gamma\gamma}) \cdot 10^{-6}$, $H \rightarrow H(h \rightarrow \psi \gamma) = (4.61 \pm 0.06_{f_{\Upsilon(1S)}} + 1.75_{-1.21} \text{ direct}} \pm 0.22_{h\rightarrow\gamma\gamma}) \cdot 10^{-9}$, $Br(h \rightarrow \Upsilon(2S) \gamma) = (2.34 \pm 0.04_{f_{\Upsilon(2S)}} + 0.75_{-0.99} \text{ direct}} \pm 0.11_{h\rightarrow\gamma\gamma}) \cdot 10^{-9}$, $Br(h \rightarrow \Upsilon(3S) \gamma) = (2.13 \pm 0.04_{f_{\Upsilon(3S)}} + 0.75_{-1.12} \text{ direct}} \pm 0.10_{h\rightarrow\gamma\gamma}) \cdot 10^{-9}$. JHEP 1508 (2015) 012

K. Nikolopoulos

Exclusive Decays $Z \rightarrow Q\gamma$: J/ ψ and Y

 \rightarrow Analogous Z boson decays also attracting significant attention

[Nucl. Phys. B 174, 317 (1980), Theor. Math. Phys. 170, 39 (2012), Phys.Rev. D92 (2015) 014007, JHEP 1504 (2015) 101]

- \rightarrow These exclusive final states are experimentally unconstrained
- \rightarrow Could be sensitive to BSM contributions
- \rightarrow LEP has accurately measured couplings to b- and c-quarks (~1%),
- but couplings to light quarks less constrained
- \rightarrow Also possibility to study potentially FCNC processes (constrained only indirectly)

Recently, a number of numerical results have appeared, for these decay rates.

Decay mode	Branching ratio
$Z^0 \to \pi^0 \gamma$	$(9.80^{+0.09}_{-0.14\mu} \pm 0.03_f \pm 0.61_{a_2} \pm 0.82_{a_4}) \cdot 10^{-12}$
$Z^0 \to \rho^0 \gamma$	$(4.19^{+0.04}_{-0.06\ \mu} \pm 0.16_f \pm 0.24_{a_2} \pm 0.37_{a_4}) \cdot 10^{-9}$
$Z^0 \to \omega \gamma$	$(2.89^{+0.03}_{-0.05\mu} \pm 0.15_f \pm 0.29_{a_2} \pm 0.25_{a_4}) \cdot 10^{-8}$
$Z^0 \to \phi \gamma$	$\left(8.63^{+0.08}_{-0.13\mu} \pm 0.41_f \pm 0.55_{a_2} \pm 0.74_{a_4}\right) \cdot 10^{-9}$
$Z^0 \to J/\psi \gamma$	$(8.02^{+0.14}_{-0.15\mu} \pm 0.20_{f-0.36\sigma}) \cdot 10^{-8}$
$ Z^0 \to \Upsilon(1S) \gamma $	$(5.39^{+0.10}_{-0.10\ \mu} \pm 0.08_{f\ -0.08\ \sigma}) \cdot 10^{-8}$
$ Z^0 \to \Upsilon(4S) \gamma $	$\left(1.22^{+0.02}_{-0.02\mu} \pm 0.13_{f-0.02\sigma}^{+0.02}\right) \cdot 10^{-8}$
$Z^0 \to \Upsilon(nS) \gamma$	$(9.96^{+0.18}_{-0.19\ \mu} \pm 0.09_{f\ -0.15\ \sigma}) \cdot 10^{-8}$

JHEP 1504 (2015) 101

PRL 114, 121801 (2015)

PHYSICAL REVIEW LETTERS

week ending 27 MARCH 2015

Search for Higgs and Z Boson Decays to $J/\psi\gamma$ and $\Upsilon(nS)\gamma$ with the ATLAS Detector

G. Aad et al.*

(ATLAS Collaboration) (Received 15 January 2015; published 26 March 2015)

A search for the decays of the Higgs and Z bosons to $J/\psi\gamma$ and $\Upsilon(nS)\gamma$ (n = 1, 2, 3) is performed with pp collision data samples corresponding to integrated luminosities of up to 20.3 fb⁻¹ collected at $\sqrt{s} = 8$ TeV with the ATLAS detector at the CERN Large Hadron Collider. No significant excess of events is observed above expected backgrounds and 95% C.L. upper limits are placed on the branching fractions. In the $J/\psi\gamma$ final state the limits are 1.5×10^{-3} and 2.6×10^{-6} for the Higgs and Z boson decays, respectively, while in the $\Upsilon(1S, 2S, 3S)\gamma$ final states the limits are $(1.3, 1.9, 1.3) \times 10^{-3}$ and $(3.4, 6.5, 5.4) \times 10^{-6}$, respectively.

DOI: 10.1103/PhysRevLett.114.121801

PACS numbers: 14.80.Bn, 13.38.Dg, 14.70.Hp, 14.80.Ec

ATLAS performed the first search for these exclusive decays of the Higgs and Z bosons H/Z \rightarrow Q γ , where Q = J/ ψ or Y(nS), n=1,2,3

A Toroidal LHC ApparatuS

 \Rightarrow General purpose detector designed for the harsh LHC environment

	ATLAS p-p run: April-December 2012									
Inner Tracker Calorimeters Muon Spectrometer Magnets										
Pixel	SCT	TRT	LAr	Tile	MDT	RPC	CSC	TGC	Solenoid	Toroid
99.9	99.4	99.8	99.1	99.6	99.6	99.8	100.	99.6	99.8	99.5
All good for physics: 95.8%										
Luminosity weighted relative detector uptime and good quality data delivery during 2012 stable beams in pp collisions at $v(z=8 \text{ TeV})$ between April 4 th and December 6 th (in %) – corresponding to 21.6 fb ⁻¹ of recorded data										

BIRMINGHAM 14

K. Nikolopoulos

Higgs boson rare decays

$h \rightarrow J/\psi\gamma$ and $h \rightarrow Y(ns)\gamma$

Phys.Rev.Lett. 114 (2015) 121801

Signature: $\mu^+\mu^-+\gamma$

- \rightarrow event selection: single(di)-muon trigger pT_µ>20,3 GeV, pT_{µµ}>36 GeV, pT_v>36 GeV $\mu\mu$ and γ isolation, [J/ψ mass requirement] L_{xy} significance, $\Delta \phi(\mu \mu, \gamma) > 0.5$
- \rightarrow total signal acceptance/efficiency $H(Z) \rightarrow J/\psi \gamma \rightarrow \mu^+ \mu^- + \gamma \sim 22\%$ (12%) $H(Z) \rightarrow Y\gamma \rightarrow \mu^+\mu^- + \gamma \sim 28\%$ (15%) \rightarrow m_{µµγ} mass resolution ~1.2-1.8%

Higgs boson rare decays

$h/Z \rightarrow J/\psi\gamma$ and $h/Z \rightarrow Y(ns)\gamma$

Phys.Rev.Lett. 114 (2015) 121801

Categories

For this search simple - detector performance driven categorisation

 \rightarrow Muon pseudo-rapidity

→ Both Central/One Non-Central

→ Photon Unconverted/Converted

$h \rightarrow J/\psi\gamma$ and $h \rightarrow Y(ns)\gamma$: Mass Resolution

barrel endcap Events Events ATLAS Simulation ATLAS Simulation Barrel Converted H \rightarrow J/ $\psi \gamma$ Sigma = 1.70 ± 0.03 GeV Mean = 124.87 ± 0.03 GeV Sigma = 2.23 ± 0.04 GeV Mean = 124.89 ± 0.04 GeV converted photon 105 Events 900 🗖 約1600 AU 1400 **ATLAS** Simulation **ATLAS** Simulation Barrel Unconverted H \rightarrow J/ $\psi \gamma$ EndCap Unconverted $H \rightarrow J/\psi \gamma$ Sigma = 1.50 ± 0.02 GeV Sigma = 1.95 ± 0.03 GeV Mean = 124.85 ± 0.02 GeV Mean = 124.92 ± 0.03 GeV unconverted photon 105 105 $m_{\mu\mu\gamma}$ [GeV] $m_{\mu\mu\gamma}$ [GeV] **UNIVERSITY**OF K. Nikolopoulos Sep 24th, 2015 Higgs boson rare decays BIRMINGHAM 17

$h/Z \rightarrow J/\psi\gamma$ and $h/Z \rightarrow Y(ns)\gamma$

Phys.Rev.Lett. 114 (2015) 121801

Background

- \rightarrow mostly inclusive quarkonium with jet "seen" as γ \rightarrow small component of combinatoric
- \rightarrow Non-parametric data-driven background estimation
- \rightarrow for Y(nS) γ also Z $\rightarrow \mu \mu \gamma_{FSR}$ from side-band fit

ory	0	bserv	ved (Expected	Signal				
00 00			Mass Rar	nge [C	GeV]	Z	Н	
Cat	All		80–100	115–135		$\mathcal{B} [10^{-6}]$	$\mathcal{B} [10^{-3}]$	
\cup	$J/\psi\gamma$							
BU	30	9	(8.9 ± 1.3)	5	(5.0 ± 0.9)	$1.29 {\pm} 0.07$	$1.96 {\pm} 0.24$	
BC	29	8	(6.0 ± 0.7)	3	(5.5 ± 0.6)	$0.63 {\pm} 0.03$	$1.06 {\pm} 0.13$	
EU	35	8	(8.7 ± 1.0)	10	(5.8 ± 0.8)	$1.37 {\pm} 0.07$	$1.47 {\pm} 0.18$	
EC	23	6	(5.6 ± 0.7)	2	(3.0 ± 0.4)	$0.99 {\pm} 0.05$	$0.93 {\pm} 0.12$	
	$\Upsilon(nS) \gamma$							
BU	93	42	(39 ± 6)	16	(12.9 ± 2.0)	$1.67 {\pm} 0.09$	2.6 ± 0.3	
BC	71	32	(27.7 ± 2.4)	5	(9.7 ± 1.2)	$0.79 {\pm} 0.04$	$1.45 {\pm} 0.18$	
EU	125	49	(47 ± 6)	16	(17.8 ± 2.4)	2.24 ± 0.12	2.5 ± 0.3	
EC	85	31	(31 ± 5)	18	(12.3 ± 1.9)	$1.55 {\pm} 0.08$	$1.60 {\pm} 0.20$	

UNIVERSITY^{OF} BIRMINGHAM 18

$h/Z \rightarrow J/\psi\gamma$ and $h/Z \rightarrow Y(ns)\gamma$: Results

$h/Z \rightarrow J/\psi\gamma$ and $h/Z \rightarrow Y(ns)\gamma$: Results

	$95\% CL_s$ Upper Limits						
	J/ψ	$\Upsilon(1S)$	$\Upsilon(2S)$	$\Upsilon(3S)$	$\sum^{n} \Upsilon(nS)$		
$\mathcal{B}(Z \to \mathcal{Q}\gamma) \left[10^{-6} \right]$							
Expected	$2.0^{+1.0}_{-0.6}$	$4.9^{+2.5}_{-1.4}$	$6.2^{+3.2}_{-1.8}$	$5.4^{+2.7}_{-1.5}$	$8.8^{+4.7}_{-2.5}$		
Observed	2.6	3.4	6.5	5.4	7.9		
$\mathcal{B}\left(H \to \mathcal{Q}\gamma\right) \left[10^{-3} \right]$							
Expected	$1.2^{+0.6}_{-0.3}$	$1.8^{+0.9}_{-0.5}$	$2.1^{+1.1}_{-0.6}$	$1.8^{+0.9}_{-0.5}$	$2.5^{+1.3}_{-0.7}$		
Observed	1.5	1.3	1.9	1.3	2.0		
$\sigma\left(pp\to H\right)\times\mathcal{B}\left(H\to\mathcal{Q}\gamma\right)[\text{fb}]$							
Expected	26^{+12}_{-7}	38^{+19}_{-11}	45_{-13}^{+24}	38^{+19}_{-11}	54_{-15}^{+27}		
Observed	33	29	41	28	44		

Phys.Rev.Lett. 114 (2015) 12, 121801 First search for H/Z \rightarrow Qγ, will constitute the

basis for Run 2 and HL-LHC extrapolations

BR 95% CLs upper limits: ~10⁻³ level for Higgs boson (SM production) decays and ~10⁻⁶ for the Z boson decays

CMS recently obtained 95% CL upper limit on BR[$H \rightarrow (J/\psi)\gamma$] < 1.5x10⁻³ [arXiv:1507.03031]

K. Nikolopoulos

$h \rightarrow ZJ/\psi$ and $h \rightarrow ZY(nS)$

 $h \rightarrow ZQ$ could be another way to approach the charm/bottom Yukawa couplings, quite similar to the exclusive $h \rightarrow Q\gamma$ decays discussed earlier.

LHC Run II

LHC Page1	Fill: 4402	E: 6500	GeV t(SB): 00	0:46:54	21-09-15 21:47:16
	PROTON	PHYSICS	: STABLE B	EAMS	
Energy:	6500 GeV	I(B1):	1.24e+14	I(B2):	1.23e+14

UNIVERSITY^{OF} BIRMINGHAM 22

First resonances in Run II

K. Nikolopoulos

Higgs boson rare decays

J/ψ production at 13 TeV: prompt vs non-prompt fraction

K. Nikolopoulos

Higgs boson rare decays

LHC/HL-LHC Plan

LHC / HL-LHC Plan

Run II will provide ×5-6 more integrated luminosity compared to Run I
 Aiming for 3000 fb⁻¹ by 2035

• Experiments will be upgraded ATLAS to go for an new all Si tracker

Charm Tagging in HL-LHC

$h/Z \rightarrow J/\psi\gamma$ and $h/Z \rightarrow Y(ns)\gamma$: at Run II/III and HL-LHC

This is a nice and, relatively, clean final state.

Fun and interesting thing to do!

A few drawbacks of these exclusive decays:

1) Small branching ratio, a handful of events expected even at HL-LHC

2) At SM sensitivity significant contribution from non-resonant $h \rightarrow \mu\mu\gamma \sim 3 \times h \rightarrow J/\psi\gamma$ and $Z \rightarrow \mu\mu\gamma$

3) This channel is also affected by potential "anomalies" in the $h \rightarrow \gamma \gamma$ loop

Light-Quark Yukawa couplings

Initially, considered impossible at the LHC, recent activity on its feasibility: \rightarrow Exploit the exclusive decays H \rightarrow Qy as direct probe to the quark Yukawa couplings [Phys.Rev.Lett. 114 (2015) 101802]

→ Sensitive to BSM physics [Phys. Rev. D 80, 076002, Phys. Lett. B665 (2008) 79, Phys.Rev. D90 (2014) 115022]

The idea is to benefit from the interference of the "direct" and "indirect" amplitudes!

$$\begin{split} &\frac{\mathrm{BR}_{h\to\phi\gamma}}{\mathrm{BR}_{h\to b\bar{b}}} = \frac{\kappa_{\gamma}[(3.0\pm0.3)\kappa_{\gamma}-0.78\bar{\kappa}_{s}]\times10^{-6}}{0.57\bar{\kappa}_{b}^{2}}, \\ &\frac{\mathrm{BR}_{h\to\rho\gamma}}{\mathrm{BR}_{h\to b\bar{b}}} = \frac{\kappa_{\gamma}[(1.9\pm0.2)\kappa_{\gamma}-0.24\bar{\kappa}_{u}-0.12\bar{\kappa}_{d}]\times10^{-5}}{0.57\bar{\kappa}_{b}^{2}}, \\ &\frac{\mathrm{BR}_{h\to\omega\gamma}}{\mathrm{BR}_{h\to b\bar{b}}} = \frac{\kappa_{\gamma}[(1.6\pm0.2)\kappa_{\gamma}-0.59\bar{\kappa}_{u}-0.29\bar{\kappa}_{d}]\times10^{-6}}{0.57\bar{\kappa}_{b}^{2}}, \end{split}$$

Phys.Rev.Lett. 114 (2015) 101802

$$Br(h \to \rho^{0} \gamma) = (1.68 \pm 0.02_{f_{\rho}} \pm 0.08_{h \to \gamma \gamma}) \cdot 10^{-5} ,$$

$$Br(h \to \omega \gamma) = (1.48 \pm 0.03_{f_{\omega}} \pm 0.07_{h \to \gamma \gamma}) \cdot 10^{-6} ,$$

$$Br(h \to \phi \gamma) = (2.31 \pm 0.03_{f_{\phi}} \pm 0.11_{h \to \gamma \gamma}) \cdot 10^{-6} ,$$

JHEP 1508 (2015) 012

Light-Quark Yukawa couplings

arXiv:1505.06689

Preliminary "back-of-the-envelope" study gives pessimistic prospects of $\kappa_c < O(2000)$ at the HL-LHC

K. Nikolopoulos

Summary

Yukawa sector likely the least theoretically motivated and constrained part of the Standard Model → Particularly true for 1st/2nd generation.

A wealth of information has been collected over the last few years on the nature of the Higgs boson → Yukawa sector still relatively unconstrained

New Physics could be lurking here!

Currently, under intense phenomenological and experimental focus; new results $(H/Z \rightarrow J/\psi\gamma, H/Z \rightarrow Y\gamma, etc)$ and new ideas/approaches to probe this sector at the LHC appear!

Most importantly: ingenuity, both from both theory and experiment, will be crucial to achieve such an enhancement of the LHC physics potential

K. Nikolopoulos

Higgs boson rare decays

Additional slides

$h/Z \rightarrow J/\psi\gamma$ and $h/Z \rightarrow Y(ns)\gamma$: Systematics

Source	Signal Yield Uncertainty	Estimated From	
Total <i>H</i> cross section	12%	QCD scale variation and	
Total Z cross section	4%	PDF uncertainties	
Integrated Luminosity	2.8%	Calibration observable and vdM scan uncertainties [†]	
Trigger Efficiency	1.7%		
Photon ID Efficiency	Up to 0.7%	Data driven techniques with	
Muon ID Efficiency	Up to 0.4%	$\left[\begin{array}{c} Z ightarrow \ell^+\ell^-,\ Z ightarrow \ell^+\ell^-\gamma \ { m and} \end{array} ight]$	
Photon Energy Scale	0.2%	$\left] \hspace{0.1 cm} J/\psi ightarrow \mu^{+}\mu^{-} \hspace{0.1 cm}$ events	
Muon Momentum Scale	Negligible		

FCNC $Z \rightarrow Q\gamma$ decays

		relative to new physics
Decay mode	Branching ratio	SM background
$Z^0 \to K^0 \gamma$	$\left[(7.70 \pm 0.83) v_{sd} ^2 + (0.01 \pm 0.01) a_{sd} ^2 \right] \cdot 10^{-8}$	$\frac{\lambda}{\sin^2 \theta_W} \frac{\alpha}{\pi} \sim 2 \cdot 10^{-3}$
$Z^0 \to D^0 \gamma$	$\left[(5.30^{+0.67}_{-0.43}) v_{cu} ^2 + (0.62^{+0.36}_{-0.23}) a_{cu} ^2 \right] \cdot 10^{-7}$	$\frac{\lambda}{\sin^2\theta_W} \frac{\alpha}{\pi} \sim 2 \cdot 10^{-3}$
$Z^0 \to B^0 \gamma$	$\left[(2.08^{+0.59}_{-0.41}) v_{bd} ^2 + (0.77^{+0.38}_{-0.26}) a_{bd} ^2 \right] \cdot 10^{-7}$	$\frac{\lambda^3}{\sin^2\theta_W} \frac{\alpha}{\pi} \sim 8 \cdot 10^{-5}$
$Z^0 \to B_s \gamma$	$\left[(2.64^{+0.82}_{-0.52}) v_{bs} ^2 + (0.87^{+0.51}_{-0.33}) a_{bs} ^2 \right] \cdot 10^{-7}$	$\frac{\lambda^2}{\sin^2\theta_W} \frac{\alpha}{\pi} \sim 4 \cdot 10^{-4}$

Н⊸тт

- Most promising for down-type fermion/lepton couplings
- Backgrounds
 - Z \rightarrow TT dominant [embedding]
 - "Fakes": Multijet, W+jets, top [data-driven]
 - "Other": Dibosons/H->WW* [MC]
- Three sub-channels: TlepTlep, TlepThad, ThadThad
- Two exclusive categories/final state: *VBF* (2 jets with large $\Delta \eta$) and *Boosted* (large di-tau pT)
- BDT for each category: *di-tau properties* ($m_{\tau\tau}$, $\Delta R_{\tau\tau}$, ...), *jet topology* (m_{jj} , $\Delta \eta_{jj}$, ...), *event activity/topology* (scalar/vector pT sum, object centralities, ...)

 $ep_T = 56 \text{ GeV}, \tau_{had} p_T = 27 \text{ GeV}, \text{MET}=113 \text{ GeV}, m_{j1,j2}=1.53 \text{ TeV}, m_{TT}^{MMC}=129 \text{ GeV}, \text{BDT score} = 0.99. \text{ S/B ratio of this bin 1.0}$

K. Nikolopoulos

Higgs boson rare decays

Sep 24th, 2015

UNIVERSITY^{OF} BIRMINGHAM 34

H→TT: Results

Higgs boson rare decays

Sep 24th, 2015

BIRMINGHAM 35

$H \rightarrow J/\psi\gamma$ and $H \rightarrow Y(ns)\gamma$

K. Nikolopoulos

Higgs boson rare decays

$H \rightarrow J/\psi\gamma$ and $H \rightarrow Y(ns)\gamma$

Phys.Rev.Lett. 114 (2015) 12, 121801

$H \rightarrow J/\psi\gamma$ and $H \rightarrow Y(ns)\gamma$

K. Nikolopoulos

Sep 24th, 2015 🚪

UNIVERSITY^{OF} BIRMINGHAM 38

Light-Quark Yukawa couplings

This was also considered impossible for the LHC. Recent activity on its feasibility: \rightarrow Exploit the exclusive decays H \rightarrow Q γ as direct probe to the quark Yukawa couplings [Phys.Rev.Lett. 114 (2015) 10, 101802]

→ Sensitive to BSM physics [Phys. Rev. D 80, 076002, Phys. Lett. B665 (2008) 79, Phys.Rev. D90 (2014) 115022]

The idea is to benefit from the interference of the "direct" and "indirect" amplitudes!

K. Nikolopoulos

Higgs in Run II and beyond

K. Nikolopoulos

Higgs boson rare decays

Prospects for Run II/III and HL-LHC

K. Nikolopoulos

Higgs boson rare decays

Sep 24th, 2015

BIRMINGHAM 41