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Part I

BEH boson decay to 3S1�QQ̄� � γ �

�Mostly taken from G. Bodwin’s talk at the QWG 2014 at CERN
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Measuring the Hcc̄ Coupling

• Higgs couplings to vector bosons, τ leptons, and b quarks have been measured.

• The coupling to t quarks is known implicitly from loop contributions to decay
processes.

• However, the couplings to first- and second-generation quarks are
terra incognita.

• One could hope to measure the Hcc̄ coupling in direct decays to J/ψ + γ:

• The channel J/ψ → �+�−, when combined with the mH and mJ/ψ mass con-
straints, provides a clean experimental signal.

Measuring the HQQ̄ Couplings 2 G. Bodwin (ANL)
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• The direct amplitude was computed many years ago.
(Keung, PRD 27, 2762 (1983))

– It is proportional to the Hc̄c coupling.

– But, the corresponding decay width is far too small to be observed at the LHC.

• However, there is also a (newly identified) indirect process for producing a vector
quarkonium plus a photon:

Dominated by t quarks and W bosons in the loop.

Measuring the HQQ̄ Couplings 3 G. Bodwin (ANL)

Sl
id
e
bo

rr
ow

ed
fr
om

G
.B

od
w
in

J.P. Lansberg (IPNO) Motivations to studyQ � γ at the LHC September 25, 2015 4 / 26



• For J/ψ, the indirect amplitude is about an order of magnitude larger than the
direct amplitude.

• The interference between the direct and indirect amplitudes is large enough to
be measured at the LHC.

• Requires knowing the theoretical prediction for the indirect amplitude with good
precision.

Measuring the HQQ̄ Couplings 4 G. Bodwin (ANL)
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Γ[H → J/ψ + γ]

• Parametrize deviations from the standard-model Hcc̄ coupling with a factor κc:

gHcc̄ = κc gSM
Hcc̄ .

• Then, the decay rate is

Γ[H → J/ψ + γ] =
����
�

ΓSM
indirect − κc

�
ΓSM

direct

����
2

.

• The indirect and direct amplitudes interfere destructively
(aside from a small phase (0.005) that we neglect).

• The rate depends on both the magnitude and the phase of gHcc̄ .

Measuring the HQQ̄ Couplings 5 G. Bodwin (ANL)
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Indirect Amplitude

• It is essential to predict the indirect amplitude very precisely in order to measure
the direct amplitude.

• Can be computed from H → γγ∗, followed by γ∗ → J/ψ.

• H → γγ∗ can be approximated by H → γγ,
up to corrections of order m2

J/ψ/m2
H.

– The amplitude for H → γγ has been computed to high precision.
(Dittmaier et al., arXiv:1101.0593, arXiv:1201.3084)

• Extract the amplitude for γ∗ → J/ψ from the measured rate for J/ψ → �+�−.

– Both amplitudes are proportional to the coupling of the J/ψ to the EM current.

– This approach effectively includes QCD and relativistic corrections to all orders—
greatly reducing uncertainties.

Measuring the HQQ̄ Couplings 6 G. Bodwin (ANL)
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Numerical Results for H → J/ψ + γ

gHcc̄ = κc gSM
Hcc̄

Γ[H → J/ψ + γ] = |(11.9± 0.2)− (1.04± 0.14)κc|2 × 10−10 GeV.

ΓSM[H → J/ψ+γ] = 1.17+0.05
−0.05×10−8 GeV. BSM[H → J/ψ+γ] = 2.79+0.16

−0.15×10−6.

• The width is sensitive to deviations from the Standard Model value of the Hc̄c

coupling:

• +42% for κc = −1.

• +20% for κc = 0.

• −18% for κc = 2.

• Interference allows us to
determine the sign of κc.

Measuring the HQQ̄ Couplings 11 G. Bodwin (ANL)
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Numerical results for H → Υ(nS) + γ

•We do the same calculation for the Υ(nS) states.

gHbb̄ = κb gSM
Hbb̄

Γ[H → Υ(1S) + γ] = |(3.33± 0.03)− (3.49± 0.15)κb|2 × 10−10 GeV.

ΓSM[H → Υ(1S) + γ] = 2.56+7.30
−2.56 × 10−12 GeV.

BSM[H → Υ(1S) + γ] = 6.11+17.41
−6.11 × 10−10.

• In the SM, the Υ(1S) direct and indirect amplitudes cancel at the 5% level.

• The SM rates are probably un-
observable at the LHC.

• However, there is a dramatic
sensitivity to deviations from
the SM coupling.

Measuring the HQQ̄ Couplings 13 G. Bodwin (ANL)
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ATLAS search
See Talk by Kostas yesterday

Search for Higgs and Z Boson Decays to J=ψγ and ϒðnSÞγ with the ATLAS Detector

G. Aad et al.
*

(ATLAS Collaboration)
(Received 15 January 2015; published 26 March 2015)

A search for the decays of the Higgs and Z bosons to J=ψγ and ϒðnSÞγ (n ¼ 1; 2; 3) is performed with

pp collision data samples corresponding to integrated luminosities of up to 20.3 fb−1 collected at
ffiffiffi

s
p ¼ 8 TeV with the ATLAS detector at the CERN Large Hadron Collider. No significant excess of events

is observed above expected backgrounds and 95% C.L. upper limits are placed on the branching fractions.

In the J=ψγ final state the limits are 1.5 × 10−3 and 2.6 × 10−6 for the Higgs and Z boson decays,

respectively, while in the ϒð1S; 2S; 3SÞγ final states the limits are ð1.3; 1.9; 1.3Þ × 10−3 and

ð3.4; 6.5; 5.4Þ × 10−6, respectively.

PRL 114, 121801 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

27 MARCH 2015
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�e (acceptance and e�ciency) corrected background (modulo
isolation cuts) can be extremely useful for QCD� see Part IV
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Part II

Generalities on gluon TMDs
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Gluon distributions

Experimental and theoretical investigations of gluons inside hadrons focused so far
on their longitudinal momentum and helicity distributions:

g�x, µF�: unpolarised gluons with a collinear momentum fraction x in
unpolarised nucleons
∆g�x, µF�: circularly polarised gluons with a collinear momentum fraction
x in polarised nucleons

Gluon Transverse Momentum Dependent pdfs (TMDs) can be nonzero
Example: for nonzero kT , the gluons can be polarised

even if the nucleons are unpolarised (hÙg1 vs. ∆g)
Nontrivial property that received much more attention in the quark sector:

� Boer-Mulders e�ect
Once hÙg1 is known, polarised processes in high-energy hadron-hadron collisions
(dominated by gg fusion) become accessible

even with unpolarised hadron beams !
Prime example: the LHC !

J.P. Lansberg (IPNO) Motivations to studyQ � γ at the LHC September 25, 2015 12 / 26



Gluon distributions

Experimental and theoretical investigations of gluons inside hadrons focused so far
on their longitudinal momentum and helicity distributions:

g�x, µF�: unpolarised gluons with a collinear momentum fraction x in
unpolarised nucleons
∆g�x, µF�: circularly polarised gluons with a collinear momentum fraction
x in polarised nucleons

Gluon Transverse Momentum Dependent pdfs (TMDs) can be nonzero
Example: for nonzero kT , the gluons can be polarised

even if the nucleons are unpolarised (hÙg1 vs. ∆g)
Nontrivial property that received much more attention in the quark sector:

� Boer-Mulders e�ect
Once hÙg1 is known, polarised processes in high-energy hadron-hadron collisions
(dominated by gg fusion) become accessible

even with unpolarised hadron beams !
Prime example: the LHC !

J.P. Lansberg (IPNO) Motivations to studyQ � γ at the LHC September 25, 2015 12 / 26



Gluon distributions

Experimental and theoretical investigations of gluons inside hadrons focused so far
on their longitudinal momentum and helicity distributions:

g�x, µF�: unpolarised gluons with a collinear momentum fraction x in
unpolarised nucleons
∆g�x, µF�: circularly polarised gluons with a collinear momentum fraction
x in polarised nucleons

Gluon Transverse Momentum Dependent pdfs (TMDs) can be nonzero
Example: for nonzero kT , the gluons can be polarised

even if the nucleons are unpolarised (hÙg1 vs. ∆g)
Nontrivial property that received much more attention in the quark sector:

� Boer-Mulders e�ect
Once hÙg1 is known, polarised processes in high-energy hadron-hadron collisions
(dominated by gg fusion) become accessible

even with unpolarised hadron beams !
Prime example: the LHC !

J.P. Lansberg (IPNO) Motivations to studyQ � γ at the LHC September 25, 2015 12 / 26



Gluon distributions

Experimental and theoretical investigations of gluons inside hadrons focused so far
on their longitudinal momentum and helicity distributions:

g�x, µF�: unpolarised gluons with a collinear momentum fraction x in
unpolarised nucleons
∆g�x, µF�: circularly polarised gluons with a collinear momentum fraction
x in polarised nucleons

Gluon Transverse Momentum Dependent pdfs (TMDs) can be nonzero

Example: for nonzero kT , the gluons can be polarised
even if the nucleons are unpolarised (hÙg1 vs. ∆g)

Nontrivial property that received much more attention in the quark sector:
� Boer-Mulders e�ect

Once hÙg1 is known, polarised processes in high-energy hadron-hadron collisions
(dominated by gg fusion) become accessible

even with unpolarised hadron beams !
Prime example: the LHC !

J.P. Lansberg (IPNO) Motivations to studyQ � γ at the LHC September 25, 2015 12 / 26



Gluon distributions

Experimental and theoretical investigations of gluons inside hadrons focused so far
on their longitudinal momentum and helicity distributions:

g�x, µF�: unpolarised gluons with a collinear momentum fraction x in
unpolarised nucleons
∆g�x, µF�: circularly polarised gluons with a collinear momentum fraction
x in polarised nucleons

Gluon Transverse Momentum Dependent pdfs (TMDs) can be nonzero
Example: for nonzero kT , the gluons can be polarised

even if the nucleons are unpolarised (hÙg1 vs. ∆g)

Nontrivial property that received much more attention in the quark sector:
� Boer-Mulders e�ect

Once hÙg1 is known, polarised processes in high-energy hadron-hadron collisions
(dominated by gg fusion) become accessible

even with unpolarised hadron beams !
Prime example: the LHC !

J.P. Lansberg (IPNO) Motivations to studyQ � γ at the LHC September 25, 2015 12 / 26



Gluon distributions

Experimental and theoretical investigations of gluons inside hadrons focused so far
on their longitudinal momentum and helicity distributions:

g�x, µF�: unpolarised gluons with a collinear momentum fraction x in
unpolarised nucleons
∆g�x, µF�: circularly polarised gluons with a collinear momentum fraction
x in polarised nucleons

Gluon Transverse Momentum Dependent pdfs (TMDs) can be nonzero
Example: for nonzero kT , the gluons can be polarised

even if the nucleons are unpolarised (hÙg1 vs. ∆g)
Nontrivial property that received much more attention in the quark sector:

� Boer-Mulders e�ect

Once hÙg1 is known, polarised processes in high-energy hadron-hadron collisions
(dominated by gg fusion) become accessible

even with unpolarised hadron beams !
Prime example: the LHC !

J.P. Lansberg (IPNO) Motivations to studyQ � γ at the LHC September 25, 2015 12 / 26



Gluon distributions

Experimental and theoretical investigations of gluons inside hadrons focused so far
on their longitudinal momentum and helicity distributions:

g�x, µF�: unpolarised gluons with a collinear momentum fraction x in
unpolarised nucleons
∆g�x, µF�: circularly polarised gluons with a collinear momentum fraction
x in polarised nucleons

Gluon Transverse Momentum Dependent pdfs (TMDs) can be nonzero
Example: for nonzero kT , the gluons can be polarised

even if the nucleons are unpolarised (hÙg1 vs. ∆g)
Nontrivial property that received much more attention in the quark sector:

� Boer-Mulders e�ect
Once hÙg1 is known, polarised processes in high-energy hadron-hadron collisions
(dominated by gg fusion) become accessible

even with unpolarised hadron beams !

Prime example: the LHC !

J.P. Lansberg (IPNO) Motivations to studyQ � γ at the LHC September 25, 2015 12 / 26



Gluon distributions

Experimental and theoretical investigations of gluons inside hadrons focused so far
on their longitudinal momentum and helicity distributions:

g�x, µF�: unpolarised gluons with a collinear momentum fraction x in
unpolarised nucleons
∆g�x, µF�: circularly polarised gluons with a collinear momentum fraction
x in polarised nucleons

Gluon Transverse Momentum Dependent pdfs (TMDs) can be nonzero
Example: for nonzero kT , the gluons can be polarised

even if the nucleons are unpolarised (hÙg1 vs. ∆g)
Nontrivial property that received much more attention in the quark sector:

� Boer-Mulders e�ect
Once hÙg1 is known, polarised processes in high-energy hadron-hadron collisions
(dominated by gg fusion) become accessible

even with unpolarised hadron beams !
Prime example: the LHC !

J.P. Lansberg (IPNO) Motivations to studyQ � γ at the LHC September 25, 2015 12 / 26



Beyond collinear factorisation

Observed �nal-state qT from
“intrinsic” kT from initial partons

Novel kind of factorisation w.r.t. the collinear one
Additional degree of freedom of the partonic motion
TMD factorisation from gluon-gluon process : qT P Q

H is free of qT

dσ �
�2π�4
8s2 S d2k1Td2k2Tδ2�k1T � k2T � qT�Hµρ �Hνσ�� �

Φµν
g �x1 , k1T , ζ1 , µ�Φρσ

g �x2 , k2T , ζ2 , µ�dR �O� q2T
Q2 �

Proven for SIDIS + pp reactions with colour singlet �nal states
Collins; Ji, Ma, Qiu; Rogers, Mulders, ...
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Gluon TMDs in unpolarised protons

Gauge-invariant de�nition:
Φµν

g �x, kT , ζ , µ� � S d�ξ�P�d2ξT�xP�n�2�2π�3 ei�xP�kT��ξ`PSFnν
a �0� �U n�–�

�0,ξ��ab Fnµ
b �ξ�SPeU

ξ�P��0

the gauge link Un�–�
�0,ξ� renders the matrix element gauge invariant and runs

from 0 to ξ via �ª along the n direction.
Parametrisation: P. J. Mulders, J. Rodrigues, PRD 63 (2001) 094021

Φµν
g �x, kT , ζ , µ� � �

1
2x

�g µνT f g1 �x, kT , µ� � �kµTkνT
M2

p
� g µνT

k2T
2M2

p
�hÙ g

1 �x, kT , µ�¡ � suppr.

f g1 : TMD distribution of unpolarised gluons
hÙ g1 : TMD distribution of linearly polarised gluons

[Helicity-
ip distribution]
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Φµν
g �x, kT , ζ , µ� � �

1
2x

�g µνT f g1 �x, kT , µ� � �kµTkνT
M2

p
� g µνT

k2T
2M2

p
�hÙ g

1 �x, kT , µ�¡ � suppr.

f g1 : TMD distribution of unpolarised gluons
hÙ g1 : TMD distribution of linearly polarised gluons

[Helicity-
ip distribution]
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Gluon TMDs in general
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′

]µν
g ∼ FT 〈P, S|Fnµ(0) U[0,ζ]F

nν(ζ) U
′

[ζ,0]|P, S〉|LF
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A. Signori, talk at LC 2015
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gg fusion in arbitrary process (colourless �nal state)

8

Glue-Interactions in an arbitrary process (colorless final state)

dσgg(qT ≪ Q) ∝
(

∑

λa,λb

Hλaλb
H∗

λaλb

)

C[fg

1
f
g

1
]

F1 helicity non-flip, azimuthally indep., survives qT - integration

+
(

∑

λ

Hλ,λ H
∗

−λ,−λ

)

C[w2 h
g⊥

1
h
⊥g

1
]

F2 double helicity flip, azimuthally independent

+
(

∑

λa,λb

Hλa,λb
H∗

−λa,λb

)

C[w3 f
g

1
h
⊥g

1
] + {a ↔ b}

F3 single helicity flip, cos(2f) [sin(2f)]- modulation

+
(

∑

λ

Hλ,−λ H
∗

−λ,λ

)

C[w4 h
⊥g

1
h
⊥g

1
]

F4 double helicity flip, cos(4f)[sin(4f)]- modulation

illustrative: helicity space (helicity amplitudes)
➙ fully diff. cross section: 4 structures
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Visualisation of hÙg1
W. den Dunnen, JPL, C. Pisano, M. Schlegel, PRL 112, 212001 (2014)

Gaussian form for hÙg1 [le�: h
Ùg
1 A 0; right: hÙg1 @ 0]

1

p
y

T
p
y

T

p
x

T
p
x

T

�e ellipsoid axis lengths are proportional to the probability of �nding a
gluon with a linear polarization in that direction
A single constraint: a positivity bound ShÙg1 S B 2M2

p~Ñp2T f
g
1

�is bound is saturated by a number of models
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Part III

Ideas to extract gluon TMDs at colliders
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Di-photon

J.W Qiu, M. Schlegel, W. Vogelsang, PRL 107, 062001 (2011)

Beside being the QCD background for H0 studies in the γγ channel,
pp� γγX is an interesting process to study gluon TMDs
Only colour-singlet particles in the �nal state

(also true for ZZ and γZ)
But contaminations from the qq̄ channel (particularly at RHIC)

⇒

quark TMDs gluon TMDs at O(αs
2) 

Only F4 (i.e. the cos�4ϕ�modulation) is purely gluonic
Huge background from π0 � isolation cuts are needed
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Low PT quarkonia and TMDs

Polarized gluon studies with charmonium and bottomonium at LHCb and AFTER

Daniël Boer*

Theory Group, KVI, University of Groningen, Zernikelaan 25, NL-9747 AA Groningen, The Netherlands

Cristian Pisano
†

Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, C.P. 170, I-09042 Monserrato (CA), Italy

PHYSICAL REVIEW D 86, 094007 (2012)

Low PT C-even quarkonium production is a
good probe of hÙg1

A�ect the low PT spectra:
1
σ
dσ�ηQ�
dq2T

� 1 � R�q2T� & 1
σ
dσ�χQ,0�

dq2T
� 1 � R�q2T�

(R involves f g1 �x, kT , µ� and hÙg1 �x, kT , µ�)
ηc production at one-loop J.P. Ma, J.X. Wang, S. Zhao, PRD88 (2013) 1, 014027.

χc0,2 factorisation issue ?� CO-CS mixing
J.P. Ma, J.X. Wang, S. Zhao, PLB737 (2014) 103-108

Cannot tune Q: Q � mQ
Experimentally very di�cult

First ηc production study at collider ever, only released last month for PηcT A 6 GeV LHCb, Eur.Phys.J. C75 (2015)
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Low PT quarkonia and TMDs

Polarized gluon studies with charmonium and bottomonium at LHCb and AFTER
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PHYSICAL REVIEW D 86, 094007 (2012)

Low PT C-even quarkonium production is a
good probe of hÙg1

A�ect the low PT spectra:
1
σ
dσ�ηQ�
dq2T

� 1 � R�q2T� & 1
σ
dσ�χQ,0�

dq2T
� 1 � R�q2T�

(R involves f g1 �x, kT , µ� and hÙg1 �x, kT , µ�)
ηc production at one-loop J.P. Ma, J.X. Wang, S. Zhao, PRD88 (2013) 1, 014027.

χc0,2 factorisation issue ?� CO-CS mixing
J.P. Ma, J.X. Wang, S. Zhao, PLB737 (2014) 103-108

Cannot tune Q: Q � mQ
Experimentally very di�cult

First ηc production study at collider ever, only released last month for PηcT A 6 GeV LHCb, Eur.Phys.J. C75 (2015)

7, 311
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Part IV

Quarkonium + photon
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Q � γ: back-to-back and both isolated

Q

γ

�e studies is of an isolated quarkonium
back-to-back with an (isolated) photon
selects the Born contributions toQ � γ

�e “back-to-back” requirement also limits the DPS contributions
[a priori evenly distributed in ∆ϕ]

Unique candidate to pin down the gluon TMDs
gluon sensitive process

colourless �nal state (virtue of isolation): TMD factorisation
applicable
small sensitivity to QCD corrections (most of them in the TMD
evolution)

[Nota: Since our analysis, it has been argued that TMD factorisation could still hold with CO contributions
owing to the presence of the �nal-state photon D. Boer, C. Pisano, Phys.Rev. D91 (2015) 7, 074024]
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Expected rates for back-to-backQ � γ
W. den Dunnen, JPL, C. Pisano, M. Schlegel, PRL 112, 212001 (2014)
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qq̄ contribution negligible;
CO (orange) smaller than CS (blue): isolation not needed for Υ
At 14 TeV, σ�J~ψSΥ � γ,Q A 20GeV� � 100 ; about half at 7 TeV
With the L � 20  �1 of pp data on tape, one expects up to 2000 events
�e ATLAS search looked at much larger Q + isolation of the leading µ

� CO contributions suppressed by this isolation ?
With a couple of re�nements, their background is maybe what we look for !
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back-to-backQ � γ and the gluon TMDs

W. den Dunnen, JPL, C. Pisano, M. Schlegel, PRL 112, 212001 (2014)

�e qT-di�erential cross section involves f
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Results with UGDs as Ansätze for TMDs

W. den Dunnen, JPL, C. Pisano, M. Schlegel, PRL 112, 212001 (2014)
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Conclusions and Outlooks

H0 � Q � γ to probe H � cc̄ and H � bb̄

But a QED contribution à la VMD complexi�es the case
�e ATLAS search paves the way for more studies
Similar �nal-state studies, but non-resonnant, are golden paths for the
extraction of the distribution of linearly polarised gluon in unpolarised
proton at the LHC

A side e�ect of such investigations could be to
make a case for isolated-quarkonium-production studies

to verify the CSM (i.e. LO v2 NRQCD) predictions !!!
With lepton beams, hÙg1 extraction is only possible at an EIC
Low PT ηc production [belowMηc~2] is highly challenging,

probably impossible with the current detectors
Nota: the nonperturbative inputs of the TMD formalism are similar for ηQ
and H0 production via the evolution of the TMDs

Di-photon production is perhaps more tractable
but very challenging where the rates are high

J.P. Lansberg (IPNO) Motivations to studyQ � γ at the LHC September 25, 2015 26 / 26



Conclusions and Outlooks

H0 � Q � γ to probe H � cc̄ and H � bb̄
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Part V

Backup
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Q � isolated γ: interesting but ...

At high energy, 2 gluons in the initial states: no quark

�e photon needs to be emitted by the heavy-quark loop
Consequence: gluon fragmentation associated with C � �1 octet [1S�8�0 & 3P�8�J ] instead
of C � �1 octet [3S�8�1 ] for the inclusive case

CS rate at NLO � conservative (high) expectation from CO
R.Li and J.X. Wang, PLB 672,51,2009

CO rates may be clearly lower if 1S�8�0 and 3P�8�
J are indeed suppressed

(at NLO)At NNLO�, CS rate clearly above (high) expectation from CO

JPL, PLB 679,340,2009.

All this is certainly interesting but TMD factorisation is most likely not applicable
because of colour in the �nal state (either COM or gluons)
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Q � γ: back-to-back and both isolated

jj jj
Born (LO) + loop: 2� 2 contributions (a)-(b) fall like P�8T
At NLO: topologies like (c) contribute at mid PT : P�6T
At NNLO: topologies like (d) dominate at very large PT : P�4T
COM contributions similar to (d):
Instead of a ’hard’ gluon, there would be multiple so� gluons.

(c)-(f): parton [� some hadrons] in the central region;
for (d), hadrons near theQ

2� 2 topologies contribute to ∆ϕQ�γ � π (back-to-back) ;
smearing e�ect small for PT Q `kTe

(c)-(f) populate ∆ϕQ�γ @ π [even ∆ϕ � 0 for (c) and (d) at large PT]
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Υ � Z cross sections
B. Gong, J.P. Lansberg, C. Lorcé, J.X. Wang, JHEP 1303 (2013) 115

Rates similar for Υ � Z and J~ψ � Z [Same forQ � γ for Q à 20 GeV]
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Potential probe of gluon TMDs as well

Rate clearly smaller thanQ � γ even at low PT
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Υ � Z and TMDs
W. den Dunnen, JPL, C. Pisano, M. Schlegel, on-going work

Υ � Z @
º
s � 14 TeV;

Q � 120 GeV, Y � 0, θ � π~2
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S
�n�
qT smaller than forQ � γ [one can integrate up to larger qT , though]

Naturally large Q: interest to study the scale evolution ?
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S(0)
qT : Model predictions for Υ+ γ production at

√
s = 14 TeV

• Q = 20 GeV, Y = 0, θCS = π/2

• Models for fg
1

: assumed to be the same as for Unintegrated Gluon Distributions

• Set B: B0 solution to CCFM equation with input based on HERA data
Jung et al., EPJC 70 (2010) 1237

• KMR: Formalism embodies both DGLAP and BFKL evolution equations
Kimber, Martin, Ryskin, PRD 63 (2010) 114027

• CGC: Color Glass Condensate Model
Dominguez, Qiu, Xiao, Yuan, PRD 85 (2012) 045003

Metz, Zhou, PRD 84 (2011) 051503
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S(2,4)
qT : Model predictions for Υ+ γ production at

√
s = 14 TeV

• Q = 20 GeV, Y = 0, θCS = π/2

• h⊥g
1 : predictions only in the CGC: in the other models saturated to its upper bound

• S
(2,4)
qT smaller than S

(0)
qT : can be integrated up to qT = 10 GeV

2.0% (KMR) < |
∫

dq2
T
S
(2)
qT | < 2.9% (Gauss)

0.3% (CGC) <
∫
dq2

T
S
(4)
qT < 1.2% (Gauss)

Possible determination of the shape of fg
1 and verification of a non-zero h⊥g

1
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Discussion: CSM via γ� vs. COM via g�

qq̄� � γ�W
3S�1�1
� J~ψW and qq̄� � g�W

3S�8�1
� J~ψW are very similar

why ?

Let us simplify and look at qq̄� � γ�
3S�1�1
� J~ψ vs. qq̄� � g�

3S�8�1
� J~ψ

�e cross sections are well-known:

CSM: σ̂ �1�
via γ� �

�4πα�2e2qe
2
Q

M3
Q
s δ �x1x2 �M2

Q~s� SR�0�S2
COM: σ̂ �8�

via g� �
�4παS�2π
27M3

Q
s δ �x1x2 �M2

Q~s� `OQ�3S�8�1 �e
�e ratio gives:

σ̂�1�
via γ�

σ̂�8�
via g�

�
6α2e2qe

2
Q`OQ�3S�1�1 �e

α2
S`OQ�3S�8�1 �e

`OQ�3S�1�1 �e � 2Nc�2J � 1� SR�0�S2
4π

Colour factor: 2Nc

J.P. Lansberg (IPNO) Motivations to studyQ � γ at the LHC September 25, 2015 34 / 26



Discussion: CSM via γ� vs. COM via g�

qq̄� � γ�W
3S�1�1
� J~ψW and qq̄� � g�W

3S�8�1
� J~ψW are very similar

why ?

Let us simplify and look at qq̄� � γ�
3S�1�1
� J~ψ vs. qq̄� � g�

3S�8�1
� J~ψ

�e cross sections are well-known:

CSM: σ̂ �1�
via γ� �

�4πα�2e2qe
2
Q

M3
Q
s δ �x1x2 �M2

Q~s� SR�0�S2
COM: σ̂ �8�

via g� �
�4παS�2π
27M3

Q
s δ �x1x2 �M2

Q~s� `OQ�3S�8�1 �e
�e ratio gives:

σ̂�1�
via γ�

σ̂�8�
via g�

�
6α2e2qe

2
Q`OQ�3S�1�1 �e

α2
S`OQ�3S�8�1 �e

`OQ�3S�1�1 �e � 2Nc�2J � 1� SR�0�S2
4π

Colour factor: 2Nc

J.P. Lansberg (IPNO) Motivations to studyQ � γ at the LHC September 25, 2015 34 / 26



Discussion: CSM via γ� vs. COM via g�

qq̄� � γ�W
3S�1�1
� J~ψW and qq̄� � g�W

3S�8�1
� J~ψW are very similar

why ?

Let us simplify and look at qq̄� � γ�
3S�1�1
� J~ψ vs. qq̄� � g�

3S�8�1
� J~ψ

�e cross sections are well-known:

CSM: σ̂ �1�
via γ� �

�4πα�2e2qe
2
Q

M3
Q
s δ �x1x2 �M2

Q~s� SR�0�S2
COM: σ̂ �8�

via g� �
�4παS�2π
27M3

Q
s δ �x1x2 �M2

Q~s� `OQ�3S�8�1 �e
�e ratio gives:

σ̂�1�
via γ�

σ̂�8�
via g�

�
6α2e2qe

2
Q`OQ�3S�1�1 �e

α2
S`OQ�3S�8�1 �e

`OQ�3S�1�1 �e � 2Nc�2J � 1� SR�0�S2
4π

Colour factor: 2Nc

J.P. Lansberg (IPNO) Motivations to studyQ � γ at the LHC September 25, 2015 34 / 26



Discussion: CSM via γ� vs. COM via g�

qq̄� � γ�W
3S�1�1
� J~ψW and qq̄� � g�W

3S�8�1
� J~ψW are very similar

why ?

Let us simplify and look at qq̄� � γ�
3S�1�1
� J~ψ vs. qq̄� � g�

3S�8�1
� J~ψ

�e cross sections are well-known:

CSM: σ̂ �1�
via γ� �

�4πα�2e2qe
2
Q

M3
Q
s δ �x1x2 �M2

Q~s� SR�0�S2

COM: σ̂ �8�
via g� �

�4παS�2π
27M3

Q
s δ �x1x2 �M2

Q~s� `OQ�3S�8�1 �e
�e ratio gives:

σ̂�1�
via γ�

σ̂�8�
via g�

�
6α2e2qe

2
Q`OQ�3S�1�1 �e

α2
S`OQ�3S�8�1 �e

`OQ�3S�1�1 �e � 2Nc�2J � 1� SR�0�S2
4π

Colour factor: 2Nc

J.P. Lansberg (IPNO) Motivations to studyQ � γ at the LHC September 25, 2015 34 / 26



Discussion: CSM via γ� vs. COM via g�

qq̄� � γ�W
3S�1�1
� J~ψW and qq̄� � g�W

3S�8�1
� J~ψW are very similar

why ?

Let us simplify and look at qq̄� � γ�
3S�1�1
� J~ψ vs. qq̄� � g�

3S�8�1
� J~ψ

�e cross sections are well-known:

CSM: σ̂ �1�
via γ� �

�4πα�2e2qe
2
Q

M3
Q
s δ �x1x2 �M2

Q~s� SR�0�S2
COM: σ̂ �8�

via g� �
�4παS�2π
27M3

Q
s δ �x1x2 �M2

Q~s� `OQ�3S�8�1 �e

�e ratio gives:
σ̂�1�
via γ�

σ̂�8�
via g�

�
6α2e2qe

2
Q`OQ�3S�1�1 �e

α2
S`OQ�3S�8�1 �e

`OQ�3S�1�1 �e � 2Nc�2J � 1� SR�0�S2
4π

Colour factor: 2Nc

J.P. Lansberg (IPNO) Motivations to studyQ � γ at the LHC September 25, 2015 34 / 26



Discussion: CSM via γ� vs. COM via g�

qq̄� � γ�W
3S�1�1
� J~ψW and qq̄� � g�W

3S�8�1
� J~ψW are very similar

why ?

Let us simplify and look at qq̄� � γ�
3S�1�1
� J~ψ vs. qq̄� � g�

3S�8�1
� J~ψ

�e cross sections are well-known:

CSM: σ̂ �1�
via γ� �

�4πα�2e2qe
2
Q

M3
Q
s δ �x1x2 �M2

Q~s� SR�0�S2
COM: σ̂ �8�

via g� �
�4παS�2π
27M3

Q
s δ �x1x2 �M2

Q~s� `OQ�3S�8�1 �e
�e ratio gives:

σ̂�1�
via γ�

σ̂�8�
via g�

�
6α2e2qe

2
Q`OQ�3S�1�1 �e

α2
S`OQ�3S�8�1 �e

`OQ�3S�1�1 �e � 2Nc�2J � 1� SR�0�S2
4π

Colour factor: 2Nc

J.P. Lansberg (IPNO) Motivations to studyQ � γ at the LHC September 25, 2015 34 / 26



Discussion: CSM via γ� vs. COM via g�

qq̄� � γ�W
3S�1�1
� J~ψW and qq̄� � g�W

3S�8�1
� J~ψW are very similar

why ?

Let us simplify and look at qq̄� � γ�
3S�1�1
� J~ψ vs. qq̄� � g�

3S�8�1
� J~ψ

�e cross sections are well-known:

CSM: σ̂ �1�
via γ� �

�4πα�2e2qe
2
Q

M3
Q
s δ �x1x2 �M2

Q~s� SR�0�S2
COM: σ̂ �8�

via g� �
�4παS�2π
27M3

Q
s δ �x1x2 �M2

Q~s� `OQ�3S�8�1 �e
�e ratio gives:

σ̂�1�
via γ�

σ̂�8�
via g�

�
6α2e2qe

2
Q`OQ�3S�1�1 �e

α2
S`OQ�3S�8�1 �e

`OQ�3S�1�1 �e � 2Nc�2J � 1� SR�0�S2
4π

Colour factor: 2Nc

J.P. Lansberg (IPNO) Motivations to studyQ � γ at the LHC September 25, 2015 34 / 26



Discussion: CSM via γ� vs. COM via g�

σ̂ �1�
via γ�

σ̂ �8�
via g�

�

6α2e2qe2Q`OQ�3S�1�1 �e

α2S`OQ�3S�8�1 �e

�e ratio depends on the initial quark, q, on αs at µR � mQ and on the ratio of
the non-perturbative coe�cients.
For J~ψ production in uū fusion and for `OJ~ψ�3S�8�1 �e � 2.2 � 10�3 GeV3, the
ratio CSM vs. COM is 2/3
For Υ production, it is about the same

(eQ smaller but αs also smaller and SR�0�S2 larger)
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