Central Exclusive Production: a window onto quarkonia

Ronan McNulty (UCD Dublin)

New Possibilities in Physics of Quarkonia. Paris, 24th – 25th September 2015.

Outline

- Theoretical background and motivation
- Experimental signatures
- CEP single charmonium: J/ψ and ψ(2S)
- [Brief mention of CEP $\mu\mu$ and χ_c]
- CEP single bottomonium: Y(1S) Y(2S) Y(3S)
- CEP double charmonium: J/ψJ/ψ, J/ψψ(2S), χ_cχ_c
- Questions and challenges.

CEP:

Theoretical background and motivation

- Understanding the vacuum
- Colourless objects in QCD (pomeron, reggeon, odderon)
- Search for new phenomena
 - exotics,
 - saturation,
 - · glueballs.
- Usually studied through onia production
- Coloured QCD backgrounds strongly suppressed.

Physics of the Vacuum

It's QCD – but not as we normally see it. It's colourless

Physics of the Vacuum

It's QCD – but not as we normally see it. It's colour-free

Double Pomeron Exchangle: χ_c , f_0 , f_2 , $\eta\eta$, $J/\psi J/\psi$, H

The onia are produced without the underlying event

Theory Experiment J/ψ / χc Y J/ψ J/ψ Future

Physics of the Vacuum

QED.

Photoproduction of vector mesons

The onia are produced without the underlying event

Theory Experiment J/ψ / χc Υ J/ψ J/ψ Future

Experimental Signatures

Find rapidity gap

Detect 'central' system including presence of **rapidity gap**

Most pp interactions distribute particles throughout 4π (collimated in jets but also with activity between jets)

Size of gap you can detect is critical

The LHCb detector

Fully instrumented: $2 < \eta < 5$

Some sensitivity: $-3.5 < \eta < -1.5$

Theory Experiment J/ψ / χc Υ J/ψ J/ψ Future

VELO sub-detector

Theory Experiment J/ψ / χc Y J/ψ J/ψ Future

Use of backwards tracks

Theory

Experiment

J/ψ / χc

Y

J/ψ J/ψ

Future

Use of backwards tracks

Graphical Representation

J/ψ J/ψ

Future

Beam pile-up

High luminosity requires multiple proton interactions per beam-crossing.

Number of interactions (N) /crossings, distributed

Average

#interactions

$$f(N) = \frac{e^{\mu} \mu^{N}}{N!}$$

LHCb Average Mu at 3.5 TeV in 2011

For LHCb in 2011, $\overline{\mu}$ =1.4

Central Exclusive Production of J/ψ and ψ(2S) mesons

Data-taking year	Energy	Integrated Luminosity	Paper
2010	7 TeV	37pb ⁻¹	JPG 40 (2013) 045001
2011	7 TeV	930pb ⁻¹	JPG 41 (2014) 055002

Note:

• $\sigma \sim x^{\lambda}$

• $g(x,Q^2)$

soft/hard

(at x=1E-5)

HERA vector meson photo-production results

20

Simple Selection Criteria

- Precisely two forward muons
- No backward tracks
- No photons
- p_T² of dimuon < 0.8 GeV²
- Mass of dimuon within 65 MeV of J/ψ or ψ(2S)

2 forward gaps that sum to 3.5 units of rapidity + a backward <gap> of 1.7

Effect of rapidity gap requirement on low multiplicity muon triggered events

All triggered events

With veto on backward tracks

Non-resonant background very small

Cross-section measurement J/ψ / ψ(2S)

Number of events observed

$$\frac{d\sigma}{dy} = \frac{pN}{A\varepsilon L\Delta y}$$

Luminosity

Acceptance (MC)

Efficiency: (found from data)

- 1. Trigger
- 2. Muon identification
- 3. Single interaction beam-crossing

Cross-section measurement J/ψ / ψ(2S)

Purity: (found from data)

- 1. non-resonant bkg (1% / 17%)
- 2. Feeddown (10% / 2%)
- 3. Inelastic Jpsi production (40% / 40%)

Number of events observed

 $\frac{d\sigma}{dy} = \frac{pN}{A\varepsilon L\Delta y}$

Luminosity

Acceptance (MC)

Efficiency: (found from data)

- 1. Trigger
- 2. Tracking & muon id.
- 3. Single interaction beam-crossing

Inelastic background

Signal Background

 $J/\psi J/\psi$

Inelastic background J/ψ

Systematic: Change signal to $\,(1+b_{
m pd}p_{
m T}^2/n)^{-n}$

HERA measured:

 b_s =4.9 GeV⁻² b_{pd} =1.1 GeV⁻²

LHCb Expect:

 $b_s \sim 6 \text{ GeV}^{-2}$ $b_{pd} \sim 1 \text{ GeV}^{-2}$

LHCb Fit:

 b_s =5.70±0.11 GeV⁻² b_{pd} =0.97±0.04 GeV⁻²

Inelastic background ψ(2S)

HERA measured: b_s =4.2 GeV⁻² b_{pd} =0.6 GeV⁻² LHCb Expect: $b_s \sim 5.5$ GeV⁻² $b_{pd} \sim 0.6$ GeV⁻² LHCb Fit: b_s =5.1±0.7 GeV⁻² b_{pd} =0.8±0.2 GeV⁻²

Integrated Cross-sections

Cross-section*BR for both muons in pseudorapidity range 2<η<4.5:

Good agreement with all theory estimates

Differential cross-sections J/ψ

S. Jones, A. Martin, M. Ryskin, and T. Teubner, *Probes of the small x gluon via exclusive J/\psi and \Upsilon production at HERA and the LHC, JHEP 1311 (2013) 085, arXiv:1307.7099.*

Differential cross-sections ψ(2S)

HERA measured power-law: $\sigma_{\gamma p \to J/\psi p}(W) = 81(W/90 \, \text{GeV})^{0.67} \, \text{nb}$ Use this for one cross-section on RHS – LHCb measure the other solution

Photo-production cross-section

Deviation from pure power-law. i.e. NLO required or only power-law for W>W₀

Sensitivity to saturation effects

Sensitivity to saturation effects

Sensitivity to saturation effects: J/ψ

L. Motyka and G. Watt, Exclusive photoproduction at the Fermilab Tevatron and CERN LHC within the dipole picture, Phys. Rev. D78 (2008) 014023, arXiv:0805.2113.

M. B. Gay Ducati, M. T. Griep, and M. V. T. Machado, Exclusive photoproduction of J/ψ and $\psi(2S)$ states in proton-proton collisions at the CERN LHC, arXiv:1305.4611.

Sensitivity to saturation effects: ψ(2S)

Search for odderon

Motyka, DIS 2008.

Sandidate for χ_c decay to $J/\psi + \gamma$

Sandidate for X_c decay to J/ψ+\

Photon resolution not quite good enough to completely resolve the three states.

About 40% of sample is CEP: other production mechanisms giving empty events.

Theory v experiment

$$\sigma_{\chi_{c0-}\mu+\mu-\gamma} = 9.3 +/- 2.2 +/- 3.5 +/- 1.8 \text{ pb}$$

 $\sigma_{\chi_{c1-}\mu+\mu-\gamma} = 16.4 +/- 5.3 +/- 5.8 +/- 3.2 \text{ pb}$
 $\sigma_{\chi_{c2-}\mu+\mu-\gamma} = 28.0 +/- 5.4 +/- 9.7 +/- 5.4 \text{ pb}$

LHCb preliminary results with 2010 data

```
\chi_0: 9.3 +- 4.5 pb \chi_1: 16.4 +- 7.1 pb \chi_2: 28.0 +-12.3 pb SuperChic: 14 pb 10 pb 3 pb
```

Large contribution due to X_{c0} is confirmed.

 χ_{c2} larger than expected but note that non-elastic background has been assumed same for each resonance. More precise data required.

Theory Experiment J/ψ /χc Υ J/ψ J/ψ Future

Data-taking year	Energy	Integrated Luminosity	Paper	
2011	7 TeV	945 pb ⁻¹	arXiv: 1505.08139	
2012	8 TeV	1985 pb ⁻¹		

Non-resonant background relatively larger

Distributions not background-subtracted.

270 Y(1S), 70 Y(2S), 40 Y(3s)

Fit to (background subtracted) p_T²

Cross-section*BR for both muons in pseudorapidity range 2<η<4.5:

$$\sigma(pp \to p\Upsilon(1S)p) = 9.0 \pm 2.1 \pm 1.7 \text{ pb},$$

 $\sigma(pp \to p\Upsilon(2S)p) = 1.3 \pm 0.8 \pm 0.3 \text{ pb}, \text{ and}$
 $\sigma(pp \to p\Upsilon(3S)p) < 3.4 \text{ pb at the } 95\% \text{ confidence level},$

$$2 \le y < 3 \qquad 3 \le y < 3.5 \qquad 3.5 \le y \le 4.5$$

$$\sigma(\Upsilon(1S)) \text{ (pb)} \quad 3.4 \pm 0.9 \pm 0.7 \quad 2.9 \pm 0.8 \pm 0.6 \quad 2.6 \pm 0.8 \pm 0.5$$

	$2 \le y < 3$	$y < 3$ $3 \le y < 3.5$ $3.5 \le y \le 4.5$		$2 \le y \le 4.5$		
	$\Upsilon(1S)$	$\Upsilon(1S)$	$\Upsilon(1S)$	$\Upsilon(1S)$	$\Upsilon(2S)$	$\Upsilon(3S)$
Purity fit	14.2	14.2	14.2	13.7	13.7	13.7
Feed-down b.g.	12.2	12.2	12.3	12.2	14.6	12.5
Υ' feed-down	4.0	4.3	5.4	4.5	11.1	_
Mass fit	2.2	2.8	2.9	2.1	2.8	3.6
Int. lumi.	2.3	2.3	2.3	2.3	2.3	2.3
$\mathcal{B}(\Upsilon o \mu^+ \mu^-)$	2.0	2.0	2.0	2.0	8.8	9.6
Total	19.5	19.7	20.0	19.3	24.8	21.4

Cross-section compared to LO and NLO

Derived photo-production cross-section

Double Charmonia

An example of the unexpected, visible when you have very clean signals....

Data-taking year	Energy	Integrated Luminosity	Paper
2011	7 TeV	945 pb ⁻¹	JPG 40 (2013) 045001
2012	8 TeV	1985 pb ⁻¹	

Theory Experiment J/ψ /χc Υ J/ψ J/ψ Future

Select 4-muon exclusive events

Dimuon spectrum having required other two muons have J/ψ mass

Selection requirement:

Require precisely 4 tracks, at least three identified as muons

Theory Experiment J/ψ /χc Υ J/ψ J/ψ Future

Allow >4 tracks

Excess of events with precisely 4 tracks.

Background from inclusive production of J/ψJ/ψ small

Search for extra photons due to χ_c -> J/ $\psi\gamma$

One candidate for χ_{c0} , which is also consistent with $\psi(2s)$ No candidates for $\chi_{c1} \chi_{c2}$

Cross-section results

$$\sigma^{J/\psi J/\psi} = 58 \pm 10 ({
m stat}) \pm 6 ({
m syst}) {
m pb},$$
 $\sigma^{J/\psi \psi(2S)} = 63^{+27}_{-18} ({
m stat}) \pm 10 ({
m syst}) {
m pb},$
 $\sigma^{\psi(2S)\psi(2S)} < 237 {
m pb},$
 $\sigma^{\chi_{c0}\chi_{c0}} < 69 {
m nb},$
 $\sigma^{\chi_{c1}\chi_{c1}} < 45 {
m pb},$
 $\sigma^{\chi_{c2}\chi_{c2}} < 141 {
m pb},$

How much is exclusive?

42+-13% but model dependence in describing inelastic contribution

Comparison to theory

LHCb estimate exclusive cross-section. **24+-9 pb**

Harland-Lang, Khoze, Ryskin: (arXiv: 1409.4785) **2-7 pb**

Shape agrees well (theory normalised to data).

Theory Experiment J/ψ /χc Υ J/ψ J/ψ Future

Future Prospects

High rapidity shower counters for LHCb

Increase rapidity gap with scintillators in forward region

First simulations suggest veto region for charged and neutral particles can be extended to include $5<|\eta|<8$ - an extra 6 units in pseudorapidity.

Theory Experiment J/ψ /χc Υ J/ψ J/ψ Future

Scintillators and PMTs

Signals from TED running

First collisions at 13 TeV!

(Harland-Lang, Khoze, Ryskin, Stirling)

CEP meson-meson production arXiv:1105.1626

- Vanishing cs when gluons in $J_z=0$
- Flavour non-singlet mesons suppressed (thus ππ/KK small)
- Flavour singlet (e.g. η'η' production)
 can proceed via
- Like to look for $\eta_c \eta_c$, D+D-, D_sD_s etc

X(3872)

X(3872) observed inclusively. (arXiv:1112.5310) Could it be produced exclusively?

- JPC of X(3872) shown by LHCb to be 1++ (arXiv:1302.6269)
- χ_{c(1++)} has been observed `exclusively'?
- If X(3872) is a bound cc state, might expect to observe it in central exclusive production, possibly ruling out some molecular production mechanisms (e.g. 1305.0527)

Low mass spectroscopy + glueballs

- Data from ISR/Tevatron
- Accessible at LHCb
- DPE, probing the nature of the vacuum

Glue laboratory

M.G. Albrow, T.D. Coughlin, and J.R. Forshaw, Prog. Part. Nucl. Phys. 65, 149 (2010). arXiv: 1006.1289

[101] T. Akesson, et al., A search for glueballs and a study of double pomeron exchange at the CERN Intersecting Storage Rings, Nucl. Phys. B264 (1986) 154.

Low mass spectroscopy + glueballs

Recent CDF analysis. PRD91 (2015) 9, 091101

Glue laboratory

M.G. Albrow, T.D. Coughlin, and J.R. Forshaw, Prog. Part. Nucl. Phys. 65, 149 (2010). arXiv: 1006.1289

[101] T. Akesson, et al., A search for glueballs and a study of double pomeron exchange at the CERN Intersecting Storage Rings, Nucl. Phys. B264 (1986) 154. Theory Experiment J/ψ /χc Y J/ψ J/ψ Future

LHC-wide programme of work

LPCC links

WELCOME

About the LPCC

Visit the LPCC

Subscribe to LPCC News

LHC WORKING GROUPS

MB & UE WG

Electroweak WG

Rate normalization WG

Top WG

Forward Physics WG

EVENTS

Forthcoming events

Past events

LHC PUBLICATIONS

STUDENTS RESOURCES

MISC

LHC WG on Forward Physics and diffraction

To subscribe to the WG mailing list, go to

http://simba3.web.cern.ch/simba3/SelfSubscription.aspx?groupName=lhc-fwdlhcwg

The WG is a forum for:

- interaction between theorists and experimentalists from the LHC experiments about forward physics
- definition of a physics programme for diffraction either using the rapidity gap method or proton tagging
- definition of a common strategy between the different LHC experiments (special runs...)
- discussion of the different forward detectors (roman pots, movable beam pipes, timing and position detectors)
- · application to cosmic ray physics

Dedicated subgroup meetings and more general meetings will take place every 5-6 weeks and are opened to everybody.

WG documents and meeting agendas: see links in the right menu

WG links

WG Twiki page WG meetings WG documents

- Special class of low multiplicity events
- Hard scattering system produced with p_T< ~1 GeV
- Usual QCD backgrounds significantly reduced.
- Do we understand production processes: $\frac{d\sigma}{dt} \sim e^{bt}$
- What quantum numbers can be produced?
- Excellent system for performing angular analysis.

Theory Experiment J/ψ /χc Υ J/ψ J/ψ Future

Questions and challenges

Peak at precisely 4 tracks shows that production can not be explained in terms of underlying QCD event / hadronisation (which surely increases exponentially)

Signal fraction for J/ψ (photoproduction) ~70%

Signal from for χc and $J/\psi J/\psi \sim 40\%$.

These events are NOT CEP, but still have large rapidity gap and are NOT consistent with underlying event / hadronisation.

=> Other colourless propagators involved?

Many JPC states may be produced without backgrounds in CEP.

Summary

- Several measurements performed by LHCb
 - J/ ψ and ψ (2S)
 - Y(1S) Y(2S) Y(3S)
 - μμ and χc (preliminary results)
 - J/ψJ/ψ, J/ψψ(2S), χcχc
- Experimentally clean production
- Potentially useful for isolating and studying exotic phenomena.

Backups

J/w J/w

Photo-production cross-section

$$ar{Q}^2 = (Q^2 + M_{J/\psi}^2)/4, \qquad x = (Q^2 + M_{J/\psi}^2)/(W^2 + M_{J/\psi}^2)$$

Cross-section proportional to gluon² $\sigma \sim (xg)^2$ and so $\sigma \sim x^{\lambda}$

- Martin A D, Nockles C, Ryskin M and Teubner T 2008 Small x gluon from exclusive J/ψ production Phys. Lett. B 662 252 (arXiv:0709.4406)
- [2] Ryskin M G 1993 J/ψ electroproduction in LLA QCD Z. Phys. C 57 89
- [3] Ryskin M G, Roberts R G, Martin A D and Levin E M 1997 Diffractive J/ψ photoproduction as a probe of the gluon density Z. Phys. C 76 231 (arXiv:hep-ph/9511228)
- [4] S. Jones, A. Martin, M. Ryskin, and T. Teubner, Probes of the small x gluon via exclusive J/ψ and Υ production at HERA and the LHC, JHEP 1311 (2013) 085, arXiv:1307.7099.

Experiment J/ψ J/ψ J/ψ Future Theory Reach in x and Q² 8 7 6 Tevatron: high Q² HI ZEUS $\log_{10}(\mathbf{Q}^2)$ Hera CDF/D0 Inclusive jets n<0.7 [GeV²] D0 Inclusive jets η<3 4 Fixed Target Experiments: CCFR, NMC, BCDMS, E665, SLAC 3 2 1 fixed target: high x 0 -1 -2 -1 -5 $log_{10}(x)$ 73 R. McNulty, CEP: a window onto quarkonia

Theory Experiment J/ψ /χc Υ J/ψ J/ψ Future

ALICE detector

p-Pb interactions

Photon flux proportional to Z². Removes two-fold ambiguity

p-Pb interactions

Photon flux proportional to Z^2 . Removes two-fold ambiguity

Consistent picture of J/ψ photo-production across wide range of energies and colliders

Central Exclusive Production with Dimuon final states

- QED process. Can be predicted with high accuracy (~1%)
- Candidate process for very precise luminosity determination at LHC

Central Exclusive Production with Dimuon final states

- Double pomeron exchange.
- Unambiguous evidence for pomeron
- 'Standard Candle' for other DPE processes, in particular, Higgs.

Central Exclusive Production with Dimuon final states

- Test of QCD and pomeron in clean environment
- Sensitive to diffractive PDF at very low x (to 5x10⁻⁶)
- Search for the odderon and saturation effects
- Measured at HERA/Tevatron but at different photon-proton energy, W

Sensitivity to gluon pdf (arXiv: 1307.7099)

S. Jones, A. Martin, M. Ryskin, and T. Teubner, *Probes of the small x gluon via exclusive J/\psi and \Upsilon production at HERA and the LHC, JHEP 1311 (2013) 085, arXiv:1307.7099.*

Fit elastic and inelastic components

Shape for inelastic events

Note: this time we have simulation that predicts the shape for the three contributions.

Background shape from data Signal shape from simulation.

Measured cross-section puup: 67 +- 19 pb

LPAIR (J. Vermaseren) 42 pb

X_c: DiMuon Invariant Mass

About half the background that was observed in the exclusive J/ψ analysis (since no continuum process).

X_c: DiMuon+Photon Invariant Mass

Inelastic contribution appears to be much larger than for J/ψ . In a first approximation it should be square of bkg in J/ψ process.

Theory v experiment

$$\sigma_{\chi_{c0-}>\mu+\mu-\gamma} = 9.3 +/- 2.2 +/- 3.5 +/- 1.8 \text{ pb}$$

$$\sigma_{\chi_{c1-}>\mu+\mu-\gamma} = 16.4 +/- 5.3 +/- 5.8 +/- 3.2 \text{ pb}$$

$$\sigma_{\chi_{c2-}>\mu+\mu-\gamma} = 28.0 +/- 5.4 +/- 9.7 +/- 5.4 \text{ pb}$$

LHCb preliminary results with 2010 data

```
\chi_0: 9.3 +- 4.5 pb \chi_1: 16.4 +- 7.1 pb \chi_2: 28.0 +-12.3 pb
```

SuperChic: 14 pb 10 pb 3 pb

Large contribution due to X_{c0} is confirmed.

 χ_{c2} larger than expected but note that non-elastic background has been assumed same for each resonance. More precise data required.

Integrated cross-sections

	$J\!/\!\psi$ [pb]	$\psi(2S) \; [\; \mathrm{pb} \;]$
Gonçalves and Machado [29]	275	
JMRT [5]	282	8.3
Motyka and Watt [2]	334	
Schäfer and Szczurek [30]	317	
Starlight [31]	292	6.1
Superchic [19]	317	7.0
LHCb measured value	$291 \pm 7 \pm 19$	$6.5 \pm 0.9 \pm 0.4$

Good agreement with all theory estimates

What's a large gap?

- Khoze, Kraus, Martin, Ryskin, Zapp, "Diffraction and correlations at the LHC: definitions and observables", arXiv:1005.4839v2
- Probability for inclusively produced J/ψ to give two muons and nothing else inside LHCb is < ~10⁻⁵

Numbers entering calculation

Table 1: Quantities entering the cross-section calculations as a function of meson rapidity.

y range (J/ψ)	[2.00, 2.25]	[2.25, 2.50]	[2.50, 2.75]	[2.75, 3.00]	[3.00, 3.25]
# Events	798	3911	6632	8600	9987
Acceptance	0.467 ± 0.009	0.653 ± 0.013	0.719 ± 0.014	0.718 ± 0.014	0.713 ± 0.014
$\epsilon_{ m id}^{\psi} imes \epsilon_{ m trig}^{\psi}$	0.71 ± 0.03	0.78 ± 0.02	0.81 ± 0.01	0.84 ± 0.01	0.85 ± 0.01
Purity	$0.592 \pm 0.012 \pm 0.030$				
$y \text{ range } (J/\psi)$	[3.25, 3.50]	[3.50, 3.75]	[3.75, 4.00]	[4.00, 4.25]	[4.25,4.50]
# Events	9877	7907	5181	2496	596
Acceptance	0.739 ± 0.015	0.734 ± 0.015	0.674 ± 0.014	0.566 ± 0.011	0.401 ± 0.008
$\epsilon_{\mathrm{id}}^{\psi} \times \epsilon_{\mathrm{trig}}^{\psi}$	0.87 ± 0.01	0.88 ± 0.01	0.87 ± 0.01	0.83 ± 0.02	0.81 ± 0.03
Purity		0.59	$92 \pm 0.012 \pm 0.0$	30	
y range $(\psi(2S))$	[2.00, 2.25]	[2.25,2.50]	[2.50, 2.75]	[2.75,3.00]	[3.00, 3.25]
# Events	31	111	208	1287	268
Acceptance	0.678 ± 0.013	0.800 ± 0.016	0.834 ± 0.017	70.787 ± 0.016	0.755 ± 0.015
$\epsilon_{ m id}^{\psi} imes \epsilon_{ m trig}^{\psi}$	0.80 ± 0.03	0.83 ± 0.02	0.86 ± 0.01	0.88 ± 0.01	0.88 ± 0.01
Purity $(\psi(2S))$	$0.52 \pm 0.07 \pm 0.03$				
$y \operatorname{range}(\psi(2S))$	[3.25, 3.50]	[3.50, 3.75]	[3.75,4.00]	[4.00,4.25]	[4.25, 4.50]
# Events	282	201	105	61	11
Acceptance	0.748 ± 0.015	0.702 ± 0.014	0.628 ± 0.013	0.524 ± 0.010	0.384 ± 0.008
$\epsilon_{\mathrm{id}}^{\psi} imes \epsilon_{\mathrm{trig}}^{\psi}$	0.90 ± 0.01	0.89 ± 0.01	0.87 ± 0.01	0.84 ± 0.02	0.77 ± 0.03
Purity $(\psi(2S))$	$0.52 \pm 0.07 \pm 0.03$				
y range (J/ψ) an	$\psi(2S)$		[2.00, 4.50]		
ϵ_{sel}			0.87 ± 0.01		
$\epsilon_{ m single}$			0.241 ± 0.003		
$L ext{ (pb}^{-1})$	929 ± 33				

Experiment J/ψ J/ψ J/ψ Future Theory Reach in x and Q² 8 7 6 Tevatron: high Q² HI ZEUS $\log_{10}(\mathbf{Q}^2)$ Hera CDF/D0 Inclusive jets n<0.7 [GeV²] D0 Inclusive jets η<3 4 Fixed Target Experiments: CCFR, NMC, BCDMS, E665, SLAC 3 2 1 fixed target: high x 0 -1 -2 -1 -5 $log_{10}(x)$ 90 R. McNulty, CEP: a window onto quarkonia

Theory Experiment J/ψ Y J/ψ J/ψ Future

The LHCb detector

Pseudorapidity veto range

All results I show imply red region void, (except for muons from signal).

Calorimeter System in LHCb

Scintillation Pad Detector.

If a charged particle goes through, we get a signal. Rough count of number of charged particles.

Use in trigger to select **low multiplicity** events for CEP. <10 hits

Cross-section*BR for both muons in pseudorapidity range $2 < \eta < 4.5$:

y range	[2.00, 2.25]	[2.25, 2.50]	[2.50, 2.75]	[2.75, 3.00]	[3.00,3.25]
$\frac{d\sigma}{dy} J/\psi \ \frac{d\sigma}{dy} \psi(2S)$	29.3 ± 1.7	92.5 ± 2.4	137.8 ± 2.4	173.1 ± 2.6	198.0 ± 2.7
$\frac{d\sigma}{du} \; \psi(2S)$	0.56 ± 0.11	1.75 ± 0.17	3.06 ± 0.22	4.41 ± 0.26	4.24 ± 0.26
ug					
y range	[3.25, 3.50]	[3.50,3.75]	[3.75,4.00]	[4.00,4.25]	[4.25,4.50]
$y \text{ range} \ \frac{d\sigma}{dy} J/\psi \ \frac{d\sigma}{dy} \psi(2S)$	[3.25, 3.50] 187.6 ± 2.6	[3.50, 3.75] 148.9 ± 2.4	$[3.75, 4.00]$ 107.4 ± 2.1	$[4.00, 4.25]$ 65.3 ± 2.0	$[4.25, 4.50] \\ 21.9 \pm 1.3$

Correlated uncertainties expressed as a percentage	of the final result	t
$\epsilon_{ m sel}$	1.4%	_
Purity determination (J/ψ)	2.0%	(20)
Purity determination $(\psi(2S))$	13.0%	ψ(2S)
$^*\epsilon_{ m single}$	1.0%	
*Acceptance	2.0%	J/ψ
*Shape of the inelastic background	5.0%	υ, φ
*Luminosity	3.5%	
Total correlated statistical uncertainty (J/ψ)	2.4%	
Total correlated statistical uncertainty $(\psi(2S))$	13.0%	
Total correlated systematic uncertainty	6.5%	

Comparison to theory

- V. P. Gonçalves and M. V. T. Machado, Vector meson production in coherent hadronic interactions: an update on predictions for RHIC and LHC, Phys. Rev. C84 (2011) 011902, arXiv:1106.3036.
- S. Jones, A. Martin, M. Ryskin, and T. Teubner, *Probes of the small x gluon via exclusive J/\psi and \Upsilon production at HERA and the LHC, JHEP 1311 (2013) 085, arXiv:1307.7099.*
- L. Motyka and G. Watt, Exclusive photoproduction at the Fermilab Tevatron and CERN LHC within the dipole picture, Phys. Rev. **D78** (2008) 014023, arXiv:0805.2113.
- W. Schäfer and A. Szczurek, Exclusive photoproduction of J/ψ in proton-proton and proton-antiproton scattering, Phys. Rev. **D76** (2007) 094014, arXiv:0705.2887.
- S. R. Klein and J. Nystrand, *Photoproduction of quarkonium in proton proton and nucleus nucleus collisions*, Phys. Rev. Lett. **92** (2004) 142003, arXiv:hep-ph/0311164.
- L. A. Harland-Lang, V. A. Khoze, M. G. Ryskin, and W. J. Stirling, Central exclusive χ_c meson production at the Tevatron revisited, Eur. Phys. J. C65 (2010) 433, arXiv:0909.4748.

J/ψJ/ψ production

) 1/4

Large literature for γγ->J/ψJ/ψ

- I. F. Ginzburg, S. L. Panfil, and V. G. Serbo, Nucl. Phys. B296 (1988) 569.
- C.-F. Qiao, Phys. Rev. D64 (2001) 077503, arXiv:hep-ph/0104309
- V. P. Gonçalves and M. V. T. Machado,
 Eur. Phys. J. C28 (2003) 71, arXiv:hep-ph/0212178.
- A. Cisek, W. Schäfer, and A. Szczurek,
 Phys. Rev. C86 (2012) 014905, arXiv:1204.5381.
- S. Baranov et al., Eur. Phys. J. C73 (2013) 2335, arXiv:1208.5917.

Requires large photon flux: Heavy ion collisions or Linear colliders

Box diagrams (Fall off with increasing Q²)

Pomeron exchange (~constant with Q²)

<1 event in 3fb⁻¹ of pp interactions

+ non-abelian diagrams + 'symmetric' gluons in the pomeron (see Harland-Lang, Khoze, Ryskin, arXiv: 1409.4785)

Double J/ψ production

Final state theoretically studied in diphoton production (linear collider) but not through double pomeron exchange (hadron collider)

Sensitivity to higher mass states (tetraquarks, η_b) Inclusive production has attracted much interest (DPS effects)

Estimated improvement in pseudorapidity

Checked with particle gun, down to very low p_T values

Efficiency to detect 5 or more hits extends beyond nominal pseudorapidity coverage, due to showering