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I. Energy in the dRGT theory



dRGT theory

Physical metric gµν and reference metric fµν

S = M2
Pl

∫ (
1

2
R −m2 U

)√
−gd4x

with

U = b0 + b1

∑
a

λa + b2

∑
a<b

λaλb + b3

∑
a<b<c

λaλbλc + b4λ0λ1λ2λ3

where bk are parameters and λa are eigenvalues of the matrix

γµν =
√

gµαfαν

/de Rham, Gabadadze, Tolley 2010/

How to compute the energy ?



Hamiltonian formulation
After the ADM decomposition

ds2
g = −N2dt2 + γik(dx i + N idt)(dxk + Nkdt)

ds2
f = −dt2 + δikdx

idxk

the Lagrangian

L =

(
1

2
R −m2 U

)√
−g

becomes

L =
1

2

√
γ N

(
KikK

ik − K 2 + R(3)
)
−m2V(Nµ, γik) + total derivative

where V =
√
γ N U and the second fundamental form

Kik =
1

2N

(
γ̇ik −∇

(3)
i Nk −∇

(3)
k Ni

)
Variables are γik and Nµ = (N,Nk).



Hamiltonian

Conjugate momenta

πik =
∂L
∂γ̇ik

=
1

2

√
γ(K ik−Kγ ik), pNµ =

∂L
∂Ṅ

µ = 0 constraints

⇒ Nν are non-dynamical ⇒ phase space is spanned by 12
variables (πik , γik) = 6 DoF. Hamiltonian

H = πik γ̇ik − L = NµHµ(πik , γik) + m2V(Nµ, γik)

with

H0 =
1
√
γ

(2πikπ
ik − (πkk )2)− 1

2

√
γR(3), Hk = −2∇(3)

i πik

Secondary constraints

−ṗNµ =
∂H
∂Nµ

= Hµ(πik , γik) + m2∂V(Nµ, γik)

∂Nµ
= 0



Degrees of freedom, m = 0

∂H
∂Nµ

= Hµ(πik , γik) + m2∂V(Nµ, γik)

∂Nµ
= 0

If m = 0 this gives 4 constraints

Hµ(πik , γik) = 0

They are first class
{Hµ,Hν} ∼ Hα

and generate gauge symmetries, one can impose 4 gauge
conditions, there remain 4 independent phase space variables

12− 4− 4 = 4 = 2× (2 DoF) ⇒ 2 graviton polarizations

Energy vanishes on the constraint surface (up to a surface term)

H = NµHµ = 0



Degrees of freedom, m 6= 0

∂H
∂Nµ

= Hµ(πik , γik) + m2∂V(Nµ, γik)

∂Nµ
= 0

For m 6= 0 these 4 equations which determine 3 shifts Nk(πik , γik)
but the lapse N remains undetermined since

rank

(
∂V(Nµ, γik)

∂Nµ∂Nν

)
= 3.

Inserting Nk(πik , γik) to the Hamiltonian gives

H = E(πik , γik) + NC(πik , γik)

⇒ two constraints C = 0, S = {H, C} = 0

⇒ there are 12− 2 = 10 = 2× (5 DoF) The energy density is
E(πik , γik) computed on the constraint surface. No explicit
expressions for E , C,S.



Restricting to the s-sector



Spherical symmetry

ds2
g = −N2dt2 +

1

∆2
(dr + βdt)2 + R2dΩ2

ds2
f = −dt2 + dr2 + r2dΩ2

N, β,R,∆ depend on t, r . Lapse N and shift β are non-dynamical.
Dynamical variables are ∆,R and their momenta

p∆ =
∂L
∂∆̇

, pR =
∂L
∂Ṙ

,

Phase space is 4-dimensional, spanned by (R,∆, pR , p∆).



Hamiltonian

H = NH0 + βHr + m2V

where

H0 =
∆3

4R2
p2

∆ +
∆2

2R
p∆pR + ∆RR ′2 + 2R(∆R ′)′ − 1

∆
Hr = ∆′

∆ + 2∆′p∆ + R ′pR

and the potential

V =
NR2P0

∆
+

R2P1

∆

√
(∆N + 1)2 − β2 + R2P2

with

Pn = bn + 2bn+1
r

R
+ bn+2

r2

R2



Number of DoF

∂H
∂N

= H0 + m2 ∂V
∂N

= 0,

∂H
∂β

= Hr + m2 ∂V
∂β

= 0.

If m = 0 ⇒ two first class constraints, H0 = 0 and Hr = 0 ⇒
4− 2− 2 = 0 DoF ⇒ no dynamics = Birkhoff theorem

If m 6= 0 ⇒ the second equations determines β,

β = (∆N + 1)
∆Hr

Y
,

while the fist one gives the constraint

C(∆,R, p∆, pR) = 0



Hamiltonian and constraints

H = E + NC, E =
Y

∆
+ m2R2P2

where the primary constraint

C = H0 + Y + m2 R2P0

∆
with Y ≡

√
(∆Hr )2 + (m2R2P1)2

while the secondary constraint

S = {C,H} =
m4R2P2

1

2Y
(∆p∆ + R pR)− Y

(
∆Hr

Y

)′

− ∆2p∆

2R

{
m4

2∆Y
∂R(R4P2

1 ) + m2∂R(R2P2)

}
− m2Hr

Y

{
∆(R2P2)′ + R2∂r (P0 −∆P2)

}
= 0

⇒ 4− 2 = 2× 1 DoF. Energy E =
∫∞

0 Edr assuming C = S = 0.
PF limit is OK.



Kinetic energy sector

Three-metric is flat but the momenta do not vanish (with x = mr)

∆ = 1, R = r , p∆ =

√
xz

m
, pR = −(xz + 4x4f )

2x
√
xz

,

two constraints reduce to

dz

dx
= 4 x2f + 2x

√
xz F ,

df

dx
=

4 (1− c3) zf − 4x3f − 3z

4x
√
xz

F − 2

x
F 2 ,

with F = ±
√
f (f + 2). Since F 2 = f (f + 2) ≥ 0 ⇒ two branches:

either f > 0 or f < −2, the energy

E0 = x2f

being either non-negative or strictly negative.
Solutions with E < 0 are not globally defined and singular.



Potential energy sector

3-metric is not flat but the momenta vanish

p∆ = pR = 0, ∆ = g/h, R = hr ⇒ S = 0,

the first constraint becomes

C(h, g) = h′′ +
2

x
h′ − h′2

2h
+

(xh)′g ′

xg
− h(1− g2)

2x2g2

− h(2− 3h)

2g
− h(1− 6h + 6h2)

2g2
= 0,

while the energy density

E(h, g) =
x2h2(3h − g − 2)

g
.

Again there are two solution branches.



Positive energy branch

flat space: h = g = 1, gµν = fµν = ηµν ⇒ E = 0

and its globally regular deformations:
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Energy is positive for globally regular, asymptotically flat fields.



Negative energy branch

tachyon space: h =
1

2
, g = 1, gµν =

1

4
fµν =

1

4
ηµν

E = −3

8
x2 m2

FP = −1

2
m2

Its deformations all have negative and infinite energy; they are not
asymptotically flat. There are also asymptotically flat negative
energy solutions, but they are singular.

One can continuously deform positive energy fields to negative
energy fields, but the energy then shows a pole ⇒ the two
branches are completely disjoint.

The negative energies cannot affect the physical sector.



Summary of part I

The energy is positive in the physical sector of the theory.

Other sectors are unphysical as they show ghost-like features
– negative energies and tachyons.

The physical sector is protected from the unphysical ones by a
potential barrier and cannot affected by negative energies ⇒
Minkowski space is stable.

Remarks

(A) The energy is claimed to be always positive if the
parameters are chosen as bk ∼ δ1

k /Comelli and Pilo 2012/

(B) The energy is claimed to be positive for a special family
of massive gravity theories with 5 + 1 DoF whose potential is
chosen such that gµν fulfills the Lorentz condition ∂µgµν = 0
/Ogievetsky, Polubarinov 1965/. This family contains (A) as
a special case.



II. Stability of cosmological solutions

arXiv.1503.03042



Problems of dRGT cosmologies – commonly accepted facts

The theory does not admit spatially flat FLRW.

There is a spatially open FLRW but it is unstable.

It follows that the theory should probably be abandoned in
favour of its extensions (bigravity, quasidilaton, ...)



Problems of dRGT cosmologies – commonly accepted facts

The theory does not admit spatially flat FLRW. (?)

There is a spatially open FLRW but it is unstable. (?)

It follows that the theory should probably be abandoned in
favour of its extensions (bigravity, quasidilaton, ...) (?)



de Sitter in dRGT

dRGT admits infinitely many solution for which gµν is the standard
de Sitter while fµν = ηab∂µΦa∂νΦb where Φa fulfill a non-linear
PDE. This fact is not widely reckognized.

Koyama, Niz, Tasinato, 2011
Chamseddine and M.S.V., 2011

d’Amico, de Rham, Dubovsky, Gabadadze, Pirskhalava, 2011
Gumrukcuoglu, Lin, Mukohyama, 2011

Gratia, Hu, Wyman, 2011
M.S.V., 2012

Kobayashi, Siino, Yamaguchi, Yoshida, 2012
Khosravi, Niz, Koyama, Tasinato, 2013



de Sitter space

Hyperbolid
−X 2

0 + X 2
1 + X 2

2 + X 2
3 + X 2

4 = α2

in 5D Minkowski space with the metric

ds2 = −dX 2
0 + dX 2

1 + dX 2
2 + dX 2

3 + dX 2
4

The geometry induced on the hyperboloid fulfills the 4D equations

Gµν + Λ gµν = 0

with

Λ =
3

α2

Changing coordinates gives FLRW cosmologies.



Embedding de Sitter to dRGT within the Gordon ansatz

fµν = u2(gµν + (1− ζ2)VµVν)

with
gµνVµVν ≡ V µVν = −1

and
P1(u) = 0

where
Pm(u) = bm + 2bm+1 u + bm+2 u

2

implies that
Tµ
ν = −Λ δµν

with
Λ = m2P0(u) ⇒ Gµ

ν + Λ δµν = 0.

/Baccetti, Martin-Moruno, Visser 2012/



Massive gravity cosmologies

Physical metric, Λ = 3/α2 = m2P0(u),

ds2
g = α2

{
−dt2 + dr2 + dx2 + dy2 + dz2

}
(g)

1 = −t2 + r2 + x2 + y2 + z2 ≡ −t2 + r2 + R2

reference metric

ds2
f = u2α2

{
−dT 2(t, r) + dx2 + dy2 + dz2

}
(f )

with P1(u) = 0. One has

ds2
f = u2(ds2

g + dt2 − dr2 − dT 2)

which is compatible with the Gordon ansatz if

∂µt∂νt − ∂µr∂νr − ∂µT∂νT = (1− ζ2)VµVν

and this determines ζ,Vµ if only T (t, r) fulfills

(∂tT )2 − (∂rT )2 = 1



Massive gravity cosmologies

Physical metric, Λ = 3/α2 = m2P0(u),

ds2
g = α2

{
−dt2 + dr2 + dx2 + dy2 + dz2

}
(g)

1 = −t2 + r2 + x2 + y2 + z2 ≡ −t2 + r2 + R2

reference metric, P1(u) = 0,

ds2
f = u2α2

{
−dT 2(t, r) + dx2 + dy2 + dz2

}
(f )

with
(∂tT )2 − (∂rT )2 = 1

⇒ there are infinitely many solutions with the same (g) but

different (f). Only T = t has been studied.



T = t in flat slicing

Setting

t = sinh τ+
ρ2

2
eτ , r = cosh τ−ρ

2

2
eτ , R =

√
x2 + y2 + z2 = ρeτ

gives the spatially-flat FLRW g-metric with a(τ) = eτ ,

ds2
g = α2

(
−dτ2 + a(τ)(dρ2 + ρ2dΩ2)

)
,

while

ds2
f = u2α2

{
−dT 2(τ, ρ) + dR2 + R2dΩ2

}
with

T (τ, ρ) =
1

2

∫
dτ

ȧ(τ)
+

1

2
(1 + ρ2) a(τ)

⇒ f-metric is inhomogeneous ⇒ no spatially flat FLRW

/d’Amico, de Rham, Dubovsky, Gabadadze, Pirtskhalava, 2011/



T = t in the open slicing

Setting

t = sinh τ cosh ρ, r = cosh τ, R = sinh τ sinh ρ

gives, with a(τ) = sinh(τ),

ds2
g = α2

(
−dτ2 + a2(τ)(dρ2 + sinh2 ρdΩ2)

)
,

ds2
f = u2α2

(
−ȧ2(τ) + a2(τ)(dρ2 + sinh2 ρdΩ2)

)
.

The two metrics share the same symmetries ⇒ manifest FLRW.

/Gumrukcuoglu, Lin, Mukohyama, 2011/

However, this solution is completely equivalent to its flat version.

Lesson: there can be non-manifest common isometries



T = t in the static slicing

Setting

t =
√

1− ρ2 sinh(τ), r =
√

1− ρ2 cosh(τ), R = ρ

gives, with a(τ) = sinh(τ),

ds2
g = α2

(
−(1− ρ2)dτ2 +

dρ2

1− ρ2
+ ρ2ρdΩ2)

)
ds2

f = u2α2
(
−dT 2(τ, ρ) + dρ2 + ρ2dΩ2

)
with

T =
√

1− ρ2 sinh(τ)

f-metric is not invariant under the action of the timelike de Sitter
isometry ∂/∂τ . This is probably the reason why the solution is
unstable (if one replaces flat f by dS).

/de Felice, Gumrukcuoglu, Mukohyama, 2012/

What about other solutions of (∂tT )2 − (∂rT )2 = 1 ?



(∂tT )2 − (∂rT )2 = 1

fairly general solution

T = cosh(ξ) t + sinh(ξ) r + W (ξ) ,

0 = sinh(ξ) t + cosh(ξ) r +
dW (ξ)

dξ
,

Difficult to explicitly resolve with respect to T (t, r).



(∂tT )2 − (∂rT )2 = 1

method of characteristics

t

r

γ

γ

T
=1

n

~n
n



(∂tT )2 − (∂rT )2 = 1

separation of variables. E.g. in static coordinates

1

Σ

(
∂T

∂τ

)2

− Σ

1− Σ

(
∂T

∂ρ

)2

= 1

gives static solutions

T =
√

1 + q2 τ +

∫
ρ dρ

Σ

√
q2 + ρ2 ,

⇒ f-metric is static.



Static solutions

A one-parameter family labeled by q ≥ 0. For q = 0 one has

ds2
g = α2{−Σ dV 2 + 2dVdρ+ ρ2dΩ2},

ds2
f = u2α2{−dV 2 + 2dVdρ+ ρ2dΩ2}.

with

V = t +

∫
dρ

1− ρ2

Only for these solutions the canonical Killing energy is
time-independent.



Energy for non-trivial Stuckelbergs



Arbitrary slicing

ds2
g = α2

{
−N2dη2 +

1

∆2
(dχ+ β dη)2 + R2 dΩ2

}
,

ds2
f = α2u2

{
−dT 2 + dR2 + R2 dΩ2

}
The energy is

E [η,T ] = u2α4P2(u)

∫
R2 (ṪR ′ − ṘT ′) dχ

integrating over the hypersurface Ση of constant η. The energy
depends on choice of the solution T (η, χ) and also on Ση. In the
unitary gauge, η = T and χ = R, one obtains unitary energy

E [T ,T ] = u2α4P2(u)

∫
χ2dχ

This is conserved – with respect to the unitary time that is
individual for each chosen solution T (η, χ).



Killing energy

A geometrically distinguished choice is the Killing time τ

E [τ,T ] = u2α4P2(u)

∫
∂τT ρ2dρ

however this is time-independent only for the static solutions with
∂τT = const.

Conjecture: any deformation around a given static solution

g (0)
µν → g (0)

µν + δgµν

increases the Killing energy as compared to the background value
E [τ,T ] ⇒ static solutions are stable.



Summary of part II

In dRGT theory there are infinitely many de Sitter solutions
labeled by T (t, r) subject to (∂tT )2 − (∂rT )2 = 1.

Solutions can be FLRW (⇒ g and f have common rotational
and translational symmetries) in a non-manifest way.

Stability of these solutions remains an open issue. One can
compare their energy with the energy of their deformations.

All solutions have time-independent canonical unitary energy
defined with respect to the unitary time.

There is a distinguished set of solutions which are invariant
under the action of the timelike de Sitter isometry. Only for
them the canonical Killing energy is time-idependent. The
energy of this solutions is conjectured to be minimal as
compared to the energy of their deformations, hence the
solutions are conjectured to be stable.



Problems of dRGT cosmologies ?

The theory does not admit spatially flat FLRW – but there is
a spatially flat solution with 3 translational and 3 rotational
Killings, hence it is homogeneous and isotropic.

There is a spatially open FLRW but it is unstable – however,
nobody has demonstrated the instability, even perturbatively.

It follows that the theory should probably be abandoned in
favour of its extensions (bigravity, quasidilaton, ...) but the
theory contains infinitely many de Sitter solutions which
should be studied.


