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What is the universe accelerated by?

Cosmological constant
Graviton mass

Matter condensation
Unknown scalar field(s)




H O rn d eS ki th e O ry Homdeski 74, Nicolis et al & Deffayet et al ‘09, Kobayashi et al “11

- Most-general single scalar field and gravity theory, which
field equations contain derivatives only up to the 2"d order
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H O rn d eS ki th e O ry Homdeski 74, Nicolis et al & Deffayet et al ‘09, Kobayashi et al “11

- Most-general single scalar field and gravity theory, which
field equations contain derivatives only up to the 2"d order
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L
G L PV th eOry Gleyzes et al. (2014)

- Single scalar field and gravity theory beyond Horndeski,
and it has the 3™ order field equations.

- In a particular gauge, unitary gauge, the 3@ order EoMs
reduce to the 2"9 order ones.
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G L PV th eOry Gleyzes et al. (2014)

- Single scalar field and gravity theory beyond Horndeski,
and it has the 3™ order field equations.

- In a particular gauge, unitary gauge, the 3@ order EoMs
reduce to the 2"9 order ones.
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D
Connection of Horndeski to GLPV

- Derivative-dependent disformal transformation

Guv = Guv + F(¢a X)8u¢av¢
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B
Transformed gravity  zumscareguictai 14

- Derivative-dependent conformal transformation

- 2 Bekenstein '92,
g,uv = Q (X’ ¢)gﬂl/‘ Zumalacarregui et al ‘14
L = 2o s RI9l+ V9L 9) + Ln(G 9))

$

Lo= 1V67[G(QZR+6Q &%) +/—9(Ly + L)

[ Beyond Horndeski/GLPV term appears! }

New scalar-tensor theory?



Wellness of the theories

- Ostrogradski’'s theorem



OStrOg rad S kl ,S th eO re m Ostrogradski (1850), Woodard ‘07

“If the higher order time derivative Lagrangian is non-
degenerate, there is at least one linear instability in the
Hamiltonian of this system”

Non-degenerate = over 4" order EoMs

example

aQ

v dtt =0

L:%R2+S(R—@)

1
Hphys = Po(Ps — Pg) [+ 5% + SR + SR

Pr=0, R+5~0 [ An extra d.o.f appears!}

# of degree of freedom = (6-2)/2=2=1+1




S
Horndeski/GLPV theory

- Horndeski : up to the 2" order EoMs
- GLPV : up to the 3 order EoMs

5g =0 5p =0 m—) f(g,w/vg,uuag/u/a q.ga q.ﬁ, ¢) =0
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f( dt?’ y T 7dt37
[ Degenerate theories }

) =0

Horndeski/GLPV theory doesn't
suffer from the Ostrogradski’s
theorem




Transformed theory

- 4% order term by beyond Horndeski
QZGW + 2Q(gﬂ,,DQ — QW) + (61Q — QR)Q,ng,ﬂgb,y
— 9,Q.Q% +4Q,Q, = 82G(Th, + T,
10L,
V.(Qx¢*(QR — 60Q)) + Q 4(QR — 61Q) + Y oh 0,

. Trace of 15t EoM Substitute it chk into EoMs

(600Q — QR)(Q — 2Q yX) = 87GT




Transformed theory

QZG;W + 29(.9#1/':'9 — Q;,uv) + TK¢,,u¢,V _ g,uVQ,aQ’a
+4Q,Q, = 87GT!

pvo

Q 16L
V (H Te) + 2 1. ——2=% _ . 0,

Reduced to the 2" order EoMs




Transformed theory

Lo = Y= (PR + 60,09 + =G(Ly + L)

162G
EoMs are the 4th order, Linear instability of the
which means the theory is Hamiltonian
non-degenerate Extra degrees of freedom

EoMs can be reduced to the Counter-example of the
2"d order by the trace of field Ostrogradski’s theorem
equation and stable

New scalar-tensor theory??



2. Derivative-dependent transformation

- Conformal + Disformal transformation Bekenstein '92

 Guw = G = AlS, X) g + B(¢, X)0,00,¢ |

detg 70 = (A - BX) #0

G
33“ £0 : A(A— AxX +BxX2) #£0

- Transforming E-H + K-essence in tilde system
Liotal = Ign + /dd+1fB\/ —§P(¢, X

) -
Liotal [§MV7 ¢] = Liotal [g,uw ¢]



Derivative-
dependent trf.

Singular trf. Regular trf.

|

Non-equivalent
theory
Ostrogradski’'s theorem

|
New scalar- Equivalent
tensor theory theory

Beyond Horndeski

Ghost

instability




- Transformed action in general gauge

jtotal — I~EH + /dd+1w _g p(gba)z)

-

ftotal [g/ﬂ/7 ¢] = liotal [g,uw (b]
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[ Many beyond Horndeski terms}




Hamiltonian analysis in Unitary gauge
- Unitary gauge
¢ =1
- ADM variables
ds® = g datdz” = —N?dt* + ;5 (dz* + N*dt) (dz’ + N7dt)
- Transformation
N?=AN? -B, N'=N' 7= Ay
A=A(t,N), B=DB(t,N)



- Action in unitary gauge
e = Ty [ dedlo N/ Aa(t, )

N o d(d—1
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The Hamiltonian & The Constraints

- Hamiltonian




- Constraints

m ~0, FN—ATNWE%E'N%O
i (z) ~ {mi(x), H'}p = —H;" (z) = 0

- 0 . .
7TN(£L') ~ awN(w) + {ﬂ'N(.’IZ),H,}p =C~=0

C_ﬁDZ (N \/,7)+\/,7[<A4)N+ 2AA4] (71'7,_771' d_lﬂ- +CU[taN7’Y,A2N,B4N]

) AN 0
Cu = (5N(w) ~ 'Yij&yij(w)> /ddyNﬁ (A2 = U, N,v)) -

1st class : H', m; 2nd class : 7, C

- # of degrees of freedom [No extra d.o.f. appears]

1
#=(20-6x2-2)=3=2+1




Derivative-
dependent trf.

Singular trf. Regular trf.

|

Non-equivalent _
Beyond Horndeski

Ostrogradski’'s theorem

Ghost New scalar- Equivalent
instability tensor theory theory




The Hamiltonian analysis tells that the transformed theory
has no extra degrees of freedom, and would not suffer
from the linear instability.

To investigate the transformed theory is a new scalar-
tensor theory or an equivalent theory, we may consider
the meaning of the derivative-dependent transformation.

We start from a very general metric + scalar theory
iIncluding our simple example, and consider the meaning
of the transformation.



S
3. Meaning of the transformation: General
analysis
- Consider a scalar-tensor theory which contains up to m-th

order g’s derivatives and up to n-th order ®@’s derivatives:

I' = /dd+1$ [L(g/u/a Raﬁ’y& Ruaﬁ'yéa e 7Ru1-°-ymaﬂ’75a ¢a ¢/Jn T 7¢M1"'Mn) + Aaﬁpﬂs(7?’043’)’<S - Raﬂ’y&)
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+)‘“(¢u - V,,,gb) e AT (¢u1---un - v(um¢u1---um_1))] ’

The action can be cast into the form

1 . .
I = / ditly [§ICAB<I>A<I>B + Mod4 — V]

U

fgrﬁitary _ /dtddeﬁ[A4(t, N) (K2 —KinJ% + (d— 1)KL_|_ d(d4—_1)L2) _U(t, N,’y)]



- General transformation including any order time
derivatives would be also cast into the derivative-
independent form if it is regular:

o4 = FA(D,t), (A=1,2,---,N)

det F4 # 0, oo Ff=——



How to reduce trf. derivative-independent

- two particle system

1 .2 1.2
L = — —
2Q1 +2Q2

. 2 .
g1 = Q1+ Q2 g2 = Q2 QL=q — 6Q22, Q2 = q2

1 . 1 )
L= 5@12+§R2+S(R—Q2)
q1 = Q1 + eR?, g2 = Q2, r= R,
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General transformation including any order time
derivatives would be also cast into the derivative-
independent form if it is regular:

o4 = FA(®,t), (A=1,2,---,N)

_ OF4
0B

N2:AN2—B, NZ:NZ, "%j:A’)’f,;j

det F4 # 0, oo F4

-

o

This transformation is a point transformation

should be the same.

~

included in canonical transformation as long as F*A
Is regular. So, the physics in the two different frame

J




We can easily find the generator by comparing the
Hamiltonians in the different frames

H=H+ %—f GIIL, ®; ] = —/dda:HA GA(D,t)

o4 =G4D,t), (A=1,2,---,N)

(242),25@)}, =0, {84@).Tp(@)}, = 540°E — ), {Ia@),p@)}p =0.

{#@.8°()} =0 {24@. 1@} =36*E -9, {0a@. 0@} =0,

4 )

We would never find new scalar-tensor theories as long
as we consider the regular transformation, although the
transformed theory may have quite non-trivial beyond
Horndeski terms.

\_ J




Horndeski etc.

canonical trf.
In unitary
gauge

Derivative-
dependent trf.

Singular trf. Regular trf.

|

Beyond Horndeski
Ostrogradski’'s theorem

New scalar- Equivalent
tensor theory theory

Ghost

instability




4. Summary

Derivative-dependent transformation, though it can create
beyond Horndeski term, does not make any new scalar-
tensor theory from known theories as long as the
transformation is invertible and regular.

A(A— BX)(A— Ax X + BxX2) £ 0

In unitary gauge, regular derivative-dependent trf. reduces
to point trf. included in the canonical trf.

The result looks very non-trivial and may be possibly
misleading in general gauge, but quite natural in unitary
gauge.

Singular transformation can create some new scalar-
tensor theories (ex. mimetic DM chamseddine et al'13)

Guv = Xgu



