Test of the equivalence principle and Fundamental constants

Développements récents

Jean-Philippe UZAN

Constants

Fundamental constants play an important role in physics

- set the order of magnitude of phenomena;
- allow to forge new concepts;
- linked to the structure of physical theories;
- characterize their domain of validity;
- *gravity:* linked to the equivalence principle;

- *cosmology*: at the heart of reflections on fine-tuning/naturalness/design/ multiverse;

Constants

Fundamental constants play an important role in physics

- set the order of magnitude of phenomena;
- allow to forge new concepts;
- linked to the structure of physical theories;
- characterize their domain of validity;
- *gravity:* linked to the equivalence principle;

- *cosmology*: at the heart of reflections on fine-tuning/naturalness/design/ multiverse;

Any parameter not determined by the theories we are using.

It has to be assume constant (no equation/ nothing more fundamental) Reproductibility of experiments. One can only measure them.

Reference theoretical framework

The number of physical constants depends on the level of description of the laws of nature.

In our present understanding [*General Relativity* + *SU*(*3*)*xSU*(*2*)*xU*(*1*)]:

Reference theoretical framework

The number of physical constants depends on the level of description of the laws of nature.

In our present understanding [*General Relativity* + SU(3)xSU(2)xU(1)]:

Thus number can increase or decrease with our knowledge of physics

Constant	Symbol	Value
Speed of light	c	299 792 458 m s ⁻¹
Planck constant (reduced)	ħ	1.054 571 628(53) × 10 ^{−34} J s
Newton constant	G	6.674 28(67) × 10 ⁻¹¹ m ² kg ⁻¹ s ⁻²
Weak coupling constant (at m_Z)	$g_2(m_Z)$	0.6520 ± 0.0001
Strong coupling constant (at m_Z)	$g_3(m_Z)$	1.221 ± 0.022
Weinberg angle	$\sin^2 \theta_{\rm W}$ (91.2 GeV) _{MS}	0.23120 ± 0.00015
Electron Yukawa coupling	he	2.94 × 10 ⁻⁶
Muon Yukawa coupling	h_{μ}	0.000607
Tauon Yukawa coupling	h_{τ}	0.0102156
Up Yukawa coupling	h_{u}	0.000016 ± 0.000007
Down Yukawa coupling	$h_{\rm d}$	0.00003 ± 0.00002
Charm Yukawa coupling	hc	0.0072 ± 0.0006
Strange Yukawa coupling	$h_{\rm s}$	0.0006 ± 0.0002
Top Yukawa coupling	ht	1.002 ± 0.029
Bottom Yukawa coupling	$h_{\rm b}$	0.026 ± 0.003
Quark CKM matrix angle	$\sin \theta_{12}$	0.2243 ± 0.0016
	$\sin \theta_{23}$	0.0413 ± 0.0015
	$\sin \theta_{13}$	0.0037 ± 0.0005
Quark CKM matrix phase	$\delta_{\rm CKM}$	1.05 ± 0.24
Higgs potential quadratic coefficient	$\hat{\mu}^2$? -(250.6 ±1.2) GeV ²
Higgs potential quartic coefficient	λ	? 1.015 ±0.05
QCD vacuum phase	$\theta_{\rm QCD}$	< 10 ⁻⁹

« C'est alors, considérant ces faits, qu'il me vint à l'esprit que si l'on supprimait totalement la résistance du milieu, tous les corps descendraient avec la même vitesse. »

> Galilée, *in Discours concernant deux sciences nouvelles*, 1638 Traduction de Maurice Clavelin, PUF, 1995.

« Il y a une puissance de la gravité, qui concerne tous les corps, proportionnelle aux différentes quantités de matière qu'ils contiennent. »

« Cette force est toujours proportionnelle à la quantité de matière des corps, & elle ne diffère de ce qu'on appelle l'inertie de la matière que par la manière de la concevoir. »

« La force de la pesanteur entre les différentes particules de tout corps est inversement proportionnelle au carré des distances des positions des particules. » Isaac Newton, *in Principia*, Londres, 1687 Traduction d'Émilie du Châtelet, Paris, 1759.

Tests on the universality of free fall

GR in a nutshell

Underlying hypothesis

Equivalence principle

- Universality of free fall
- Local lorentz invariance
- Local position invariance

 $S_{matter}(\psi, g_{\mu
u})$

GR in a nutshell

Underlying hypothesis

Equivalence principle

- Universality of free fall
- Local lorentz invariance
- Local position invariance

Relativity

 $g_{\mu
u}=g^*_{\mu
u}$

Equivalence principle and constants

<u>In general relativity</u>, any test particle follow a geodesic, which does not depend on the mass or on the chemical composition

Imagine some constants are space-time dependent

- 1- Local position invariance is violated.
- 2- Universality of free fall has also to be violated

Mass of test body = mass of its constituants + binding energy

In Newtonian terms, a free motion implies $\frac{d\vec{p}}{dt} = m \frac{d\vec{v}}{dt} = \vec{0}$

But, now

$$\frac{d\vec{p}}{dt} = \vec{0} = m\vec{a} + \frac{dm}{d\alpha}\dot{\alpha}\vec{v}$$

$$\vec{m}\vec{a}_{\text{anomalous}}$$

Varying constants: constructing theories

$$S[\phi, \bar{\psi}, A_{\mu}, h_{\mu\nu}, \dots; c_1, \dots, c_2]$$

If a constant is varying, this implies that it has to be replaced by a dynamical field

This has 2 consequences:

1- the equations derived with this parameter constant will be modified one cannot just make it vary in the equations

2- the theory will provide an equation of evolution for this new parameter

The field responsible for the time variation of the « constant » is also responsible for a long-range (composition-dependent) interaction i.e. at the origin of the deviation from General Relativity. Planck & CMB constraints

[with S. Galli, O. Fabre, S. Prunet, E. Menegoni, & Planck collaboration (2013)]

- Big bang nucleosynthesis [with A. Coc, E Vangioni, L. Olive (2007-2013)]
- Variations on BBN [with A. Coc, E Vangioni, M. Pospelov (2013-2015)]

ANR VACOUL (PI: Patrick Petitjean) / ANR Thales (PI: Luc Blanchet)

Observables and primary constraints

A given physical system gives us an observable quantity

Step 1:

From a physical model of our system we can deduce the sensitivities to the primary physical parameters

$$\kappa_{G_k} = rac{\partial \ln O}{\partial \ln G_k}$$

Step 2:

The primary physical parameters are usually not fundamental constants.

$$\Delta \ln G_k = \sum_i d_{ki} \Delta \ln c_i$$

Physical systems

Cosmic microwave background

[with S. Galli, O. Fabre, S. Prunet, E. Menegoni, et al. (2013)]

- $p + e \longleftrightarrow H + \gamma$ Reaction rate $\Gamma_{\rm T} = n_{\rm e} \sigma_{\rm T}$
- 1- Recombination $n_e(t), \dots$
- 3- Last scattering

Out-of-equilibrium process – requires to solve a Boltzmann equation

Dependence on the constants

Recombination of hydrogen and helium Gravitational dynamics (expansion rate) predictions depend on G, α, m_e

$$\sigma_{\rm T} = \frac{8\pi}{3} \frac{\hbar^2}{m_{\rm e}^2 c^2} \alpha_{\rm EM}^2$$

We thus consider the parameters: $\{\omega_{\rm b}, \omega_{\rm c}, H_0, \tau, n_s, A_s, \alpha \text{ or } m_e\}$

All the dependences of the constants can be included in a CMB code (recombination part: RECFAST): $(\alpha)^2(m)$

 $\begin{array}{l} E=h\nu \ Binding \ energies \\ \sigma_T \ Thomson \ cross-section \\ \sigma_n \ photoionisation \ cross-sections \\ \alpha \ recombination \ parameters \\ \beta \ photoionisation \ parameters \\ K \ cosmological \ redshifting \ of \ the \ photons \\ A \ Einstein \ coefficient \\ \Lambda_{2s} \ 2s \ decay \ rate \ by \ 2\gamma \end{array}$

$$\begin{split} \nu_{i} &= \nu_{i0} \left(\frac{\alpha}{\alpha_{0}}\right)^{2} \left(\frac{m_{e}}{m_{e0}}\right) \\ \sigma_{\mathrm{T}} &= \sigma_{\mathrm{T0}} \left(\frac{\alpha}{\alpha_{0}}\right)^{2} \left(\frac{m_{e}}{m_{e0}}\right)^{-2} \\ \sigma_{n} &= \sigma_{n0} \left(\frac{\alpha}{\alpha_{0}}\right)^{-1} \left(\frac{m_{e}}{m_{e0}}\right)^{-2} \\ & \\ \alpha_{i} &= \alpha_{i0} \left(\frac{\alpha}{\alpha_{0}}\right)^{3} \left(\frac{m_{e}}{m_{e0}}\right)^{-3/2} \\ \beta_{i} &= \beta_{i0} \left(\frac{\alpha}{\alpha_{0}}\right)^{3} \\ K_{i} &= K_{i0} \left(\frac{\alpha}{\alpha_{0}}\right)^{-6} \left(\frac{m_{e}}{m_{e0}}\right)^{-3} \\ A_{i} &= A_{i0} \left(\frac{\alpha}{\alpha_{0}}\right)^{5} \left(\frac{m_{e}}{m_{e0}}\right) \\ \Lambda_{i} &= \Lambda_{i0} \left(\frac{\alpha}{\alpha_{0}}\right)^{8} \left(\frac{m_{e}}{m_{e0}}\right) \end{split}$$

Dependence on the constants

Effect on the temperature power spectrum

Effect on the polarization power spctrum

Effect on the cross-correlation

Varying α alone

 $\{\omega_{\rm b}, \omega_{\rm c}, H_0, \tau, n_s, A_s, \alpha \text{ or } m_e\}$

Varying m_e alone

 $\{\omega_{\rm b}, \omega_{\rm c}, H_0, \tau, n_s, A_s, \alpha \text{ or } m_e\}$

(α, m_e) -degeneracy

Why *Planck* does better

Why Planck does better

Why Planck does better

In conclusion

Independent variations of α and m_e are constrained to be $\Delta \alpha / \alpha = (3.6 \pm 3.7) \times 10^{-3}$ $\Delta m_e / m_e = (4 \pm 11) \times 10^{-3}$ This is a factor 5 better compared to WMAP analysis

1.0 $\frac{WMAP9}{Planck+WP}$ $\frac{Planck+WP}{Planck+WP+HST}$ $\frac{\alpha}{Planck+WP+BAO}$ 0.4 0.20.0 0.97 0.98 0.99 1.00 1.01 α/α_0

Planck breaks the degeneracy with $\rm H_o$ and with $\rm m_e$ and other cosmological parameters (e.g. $\rm N_v$ or helium abundance)

Big bang nucleosynthesis & Population III stars

Nuclear physics at work in the universe

[Coc,Nunes,Olive,JPU,Vangioni 2006 Coc, Descouvemont, Olive, JPU, Vangioni, 2012 Ekström, Coc, Descouvemont, Meynet, Olive, JPU, Vangioni,2009]

BBN: basics

BBN: dependence on constants

Light element abundances mainly based on the balance between

- 1- expansion rate of the universe
- 2- weak interaction rate which controls n/p at the onset of BBN

Example: helium production

$$Y = \frac{2(n/p)_N}{1 + (n/p)_N} \qquad (n/p)_f \sim e^{-Q/k_B T_f} \swarrow (D_D, \eta)$$
$$(n/p)_N \sim (n/p)_f e^{-t_N/\tau_n}$$

freeze-out temperature is roughly given by

 $G_F^2(k_B T_f)^5 = \sqrt{GN}(k_B T_f)^2$

Coulomb barrier: $\sigma = \frac{S(E)}{E} e^{-2\pi \alpha Z_1 Z_2 \sqrt{\mu/2E}}$

Predictions depend on

$$egin{aligned} G_k &= (G, lpha, au_n, m_e, Q, B_D, \sigma_i) \ X &= (\eta, h, N_
u, \ldots) \end{aligned}$$
 for Numes Olive

Coc,Nunes,Olive,JPU,Vangioni 2006

(D m)

Sensitivity to the nuclear parameters

Independent variations of the BBN parameters

$$\begin{split} &-7.5\times 10^{-2} < \frac{\Delta B_D}{B_D} < 6.5\times 10^{-2} \\ &-8.2\times 10^{-2} < \frac{\Delta \tau_n}{\tau_n} < 6\times 10^{-2} \\ &-4\times 10^{-2} < \frac{\Delta Q}{Q} < 2.7\times 10^{-2} \end{split}$$

Abundances are very sensitive to B_{D} . Equilibrium abundance of D and the reaction rate $p(n,\gamma)D$ depend exponentially on B_D .

These parameters are not independent.

Difficulty: QCD and its role in low energy nuclear reactions.

A=5 & A=8

To go further: - influence on helium-5, lithium-5, beryllium-8, carbon-12 - cross-sections such as

 ${}^{3}\text{H}(\hat{d}, n){}^{4}\text{He}, {}^{3}\text{He}(d, p){}^{4}\text{He} \text{ and } {}^{4}\text{He}(\alpha \alpha, \gamma){}^{12}\text{C}$

To that goal, we introduced a modelisation that will also allow to study the stellar physics.

Cluster model & δ_{NN}

Cluster approach:

- solve the Schrödinger equation by considering Be8/C12 as clusters of α particle

$$\begin{split} \Psi^{JM\pi}_{^8\text{Be}} &= \mathcal{R}\phi_\alpha\phi_\alpha g_2^{JM\pi}(\boldsymbol{\rho}) \\ \Psi^{JM\pi}_{^{12}\text{C}} &= \mathcal{R}\phi_\alpha\phi_\alpha\phi_\alpha g_3^{JM\pi}(\boldsymbol{\rho},\boldsymbol{R}), \end{split}$$

- The Hamiltonian is then given by $H = \sum_{i=1}^{A} T(r_i) + \sum_{i < j=1}^{A} (V_{Coul.}(r_{ij}) + V_{Nucl.}(r_{ij}))$

- We assume that

 $V_{ij} = (1 + \delta_{\alpha})V_{ij}^{C} + (1 + \delta_{NN})V_{ij}^{N}$ to obtain B_D , E_R (⁸Be), E_R (¹²C)

- δ_{NN} is an effective parameter

Cluster model
$$\leftarrow$$
 Theoretical analysis
 $\Delta B_D/B_D = 5.716 \times \delta_{\rm NN}.$ $\frac{\Delta B_D}{B_D} = 18 \frac{\Delta \Lambda_{\rm QCD}}{\Lambda_{\rm QCD}} - 17 \left(\frac{\Delta v}{v} + \frac{\Delta h_s}{h_s}\right)$

Constraints

FIG. 12 (color online). Update Fig. 4 of Ref. [22] assuming S = 240 and R = 36 (solid blue line), using new rates for ${}^{3}\text{He}(\alpha, \gamma){}^{7}\text{Li}$ [73] and ${}^{1}\text{H}(n, \gamma)\text{D}$ [74] and the Ω_{b} value from WMAP7 [4]. The top axis is $-\delta_{\text{NN}}$ from Eq. (5.8) (mind the sign) and the dashed red line assumes $N_{\nu} = 4$.

Primordial CNO production

Primordial CNO may affect dynamics of Pop III if CNO/H>10⁻¹²-10⁻¹⁰

In standard BBN CNO/H= $(0.2-3)10^{-15}$ [locco et al (2007); Coc et al. (1012)]. It proceeds as

⁷Li(α , γ)¹¹B ⁷Li(n, γ)⁸Li(α , n)¹¹B ¹¹B(p, γ)¹²C ¹¹B(d, n)¹²C, ¹¹B(d, p)¹²B ¹¹B(n, γ)¹²B which bridge the gap between A=7 and A=12.

Effect on He-5 and Li-5 were also studied.

Stable A=5 & A=8 do not affect the standard BBN abundances

Variation on BBN (that may be of interest for bi-people)

Li problem

This model not only explain the large scale structure etc. but also the way all the elements of Mendeleev table were synthetized.

Analysis of the Planck CMB data

$$\eta = 6.047 \pm 0.074 \longrightarrow {^7Li/H_{BBN}} = (4.89^{+0.41}_{-0.39}) \times 10^{-10},$$

Measurements of Li-7 abundance give

 $(1.23^{+0.34}_{-0.16}) \times 10^{-10}$ [Ryan, Beers, Olive, Fields, Norris, (2000).] $(1.58\pm 0.31)\times 10^{-10}$

[Sbordone (2010) Aoki et al. (2010) Melendez et al (2010)]

Solution may be:

- Astrophysical (extrapolation to zero metallicity)
- Cosmological [see e.g. Regis & Clarkson (2010)]
- Physical

Li problem: model of neutron injection

Neutron injection lead to the suppression of the freeze-out abundance of Be-7.

This mechanism works by

- enhancing the conversion of beryllium to lithium, $^7\mathrm{Be}(n,p)^7\mathrm{Li},$ immediately after $^7\mathrm{Be}$ is created,

-followed by more efficient proton burning of ⁷Li, ⁷Li(p, α) α .

[Reno & Seckel (1988), Jedamzik (2004),...]

We consider 4 classes of models

[Coc, Pospelov, JPU, Vangioni (2014)]

Model	Physical parameters	Cosmological parameters
n - n' oscillation Particle decay	$\Delta m, m_{12} \ au_X$	$egin{array}{c} x,\eta' \ Y_X \end{array}$
Particle annihilation	λ_0	Y_X
annihilation	E_r	Y_X

Li problem

None of these models can be in agreement with both lithium-7 and deuterium.

Conclusions and perspective

In the past years, we have obtained a series of results concerning the variation of fundamental constants:

- Theoretical modelling of g_p ; useful for clock & quasars
- Study of coupled variations in GUT
- First model of pure spatial variations

-CMB

- improved constraint by a factor 5 compared to WMAP
- lift the degeneracy between $\alpha,\,m_e\,\text{and}\,H_o$
- First constraint on spatial variation

- Nuclear physics:

-BBN: improved constraints; detailed study of A=5 & A=8

-Pop III stars: fine tuning at 10⁻³ (anthropic)

Physical systems: new and future

