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Tensor fields���

All classical and continuous physics is expressed in terms of  
tensor fields on a manifold. Well known examples are  
 
 
-Fluid dynamics (Pressure P, Energy density      , velocity 
-Electromagnetism (             fields, but also V &      ) 

⇢ ~v
~E ~B ~A



Manifold, coordinates, and vector basis���
In general the mathematical structure is obvious and hidden 
 
-   The manifold is flat and trivial :             and time is a parameter 

-  Natural coordinates are (x,y,z) or (r,ϑ,φ) or (r,ϑ,z)  
       This labels the point we are considering 
 
-     Natural basis   
       
 

R3

e1 =
@

@x

= (1, 0, 0)

Temperature T(x,y,z) 
 
Velocity  (components)  
vx(x,y,z), vy(x,y,z), vz(x,y,z) 
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Vector basis and forms basis���

We need a set of 1-forms to get the components of a vector. 
Indeed a form associates a number to a vector 
 
The co-basis is a set of forms          i =1,2,3  (or i=x,y,z) 

ei[ej ] = �ij

ei

) ei[V] = ei[V kek] = V i

Change of basis 

e
x

ey
ẽ
x

ẽy

Co-variance 

Contra-variance 

ẽi = ejR
j
i

ei = Ri
j ẽ

j

A vector field is defined, independently  
from the basis used to measure its components. 
It has a pure geometrical meaning 

V = V iei = Ṽ iẽi



Examples of tensors���

We define the object   R = Ri
jei ⌦ ej

ẽj = R[ej ] = eiR
i
j

So very naturally, the quantities which appear in equations are more general 
than just scalar fields and vector vields.  
But it appears more natural to work with coordinates. 
 
e.g. In fluid dynamics we have the strain rate,  
which comes from differences of velocity inside the fluid 

� = �ije
i ⌦ ej �ij = @ivj + @jvi

⌃ = ⌃ije
i ⌦ ejand the stress tensor                                       which enters the Navier-Stokes 

⌃ = µ[�] ⌃ij = µij
kl�kl

Measuring the components of the viscosity tensor μ is the program of rheology 
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Adapted notation for tensors���

1) We want to keep the geometrical meaning 
 Relations are valid for any basis  
 We can specify to Cartesian or spherical coordinates only at the very end 

 
2) When a tensor is applied to another tensor and is of complicated nature like μ 
we need to keep track  of what 1-form is applied to which vector 
 

The solution is to use abstract indices which are only here to remember the tensorial nature 
 
-  We can contract indices (apply a form to a vector) 

-  We can take the tensor product of two tensors 

-  We can build new tensors with (covariant) derivatives 

-  We can specify some symmetries, antisymmetries 

Usually we use a different set of indices to avoid confusion 
Greek indices instead of i,j,k in general. 
 
Components in a given basis can be recovered through 

Aµ⌫�B⌫�

vµv⌫

rµv⌫
Tµ⌫ � T⌫µ

Xi = ei[X] = eiµX
µ



So why an abstract tensor calculus���

1)  Expressions can become quite large in the derivation manipulation of equations 
 space ! We use the RAM 

 
2)   Simplifications can be complicated and take a very long time 

 time ! We use the CPU 

Specifications we need : 
 
Input 
-a notation for up and down abstract indices 
-contraction of indices (Einstein convention of summation) 
-covariant derivatives 
-a metric and an inverse metric to raise or lower indices. Not necessarily flat. 
 
Output 
-A simplification routine which detects terms which are equivalent 
-Nice display with indices placed in the correct position (up&down) 
Several packages available : I know only xAct … http://www.xact.es/ 



Especially for cosmological perturbations…���

1) The large-scale structure of the universe is very close to a homogeneous  
and isotropic solution. 
 
2) The growth of structure is understood as the result of gravitational collapse  
of small fluctuations around this idealized background 
 
3) Linearizing the theory of gravity (GR for the standard model) is the easiest 
-it accounts very well for the growth of structure on large and intermediary scales 
-it is rather computationally involved to get the equations due to the complexity of GR 
 
4) Non-linear theory is needed to account for small scales (non-linear) effects 

 -non-Gaussianity induced by non-linear effects ?  
 -GR effects in the N-body simulations ? 

 
 
   The derivation of equations can take a very long time and is rather tedious 



Loading the package xAct���



Basic syntax���
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Perturbations in General���

gµ⌫

ḡµ⌫

Perturbations are tensorial fields, living on the background spacetime. 
They can be decomposed in orders of perturbations  

�⇤[gµ⌫ ]� ḡµ⌫ ⌘ �[gµ⌫ ]

�[gµ⌫ ] =
1X

n=1

(n)hµ⌫

n!



Perturbations in General���

Perturbation of the inverse metric 
 
 
 
 
Perturbation of the Christoffel 
 
 
 
 
 
Perturbation of the Riemann tensor 
 
 
 
 
All perturbations of geometrical tensors are expressed in function of the  
perturbed metric   and its background covariant derivative 

(n)hµ⌫ r̄↵
(n)hµ⌫ r̄↵r̄�

(n)hµ⌫

1

1 + x

= 1� x+ x

2 � x

3
. . .



General perturbations : using xPert   (D. Brizuela et al 2006-now)���
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Variation of Actions���
Z

Eµ⌫�g
µ⌫p

gd4x Eµ⌫

Z
Eµ⌫↵r↵

�g

µ⌫p
gd4x �r↵Eµ⌫↵



Variation of Actions���
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Cosmological Perturbations. ���

ds2 = a(⌘)2[�(1 + 2�)d⌘2) + (1� 2 )�ijdx
idxj ]

When cosmologists write the simplest perturbed metric, they write 

What they mean 

Roadmap : 
 
-Find the general expression for a perturbed tensor  
   (perturbation of Einstein tensor typically) 
 
-Perform a conformal transformation to account for the scale factor 
 
-Restrict to a given order (first order for simplicity) 
  
-Replace the general first order metric perturbation by its parameterization ? 
 
-Read the result ? 

�

⇤[gµ⌫ ]� ḡµ⌫ = a

2[�2�d⌘ ⌦ d⌘ � 2 dxi ⌦ dxj ]



Conformal transformation���



Roadmap ���
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Parameterisation of the perturbed metric���

So when the parameterisation of the perturbed metric is 
 
 

(1)gµ⌫ = �2�n̄µn̄⌫ � 2 h̄µ⌫

we replace the first order perturbed metric by 
 

a

2[�2�d⌘ ⌦ d⌘ � 2 �ijdx
i ⌦ dxj ]



Roadmap ���
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Reading the result: 1+3 splitting of background���

The background cosmological solution (Friedmann-Lemaître) : 
 
-The expansion is contained entirely in the scale factor 
 
-A class of free falling observers define the cosmic time  
 
-The spatial sections have (conformal) metric  
-The spatial sections are homogeneous (invariant under translation) 

˜̄gµ⌫ = a2ḡµ⌫

n̄µ

h̄µ⌫ = ḡµ⌫ + n̄µn̄⌫

This means that we have a natural 1+3 slicing of the background manifold 
-The scale factor contains all the extrinsic curvature of the slicing. 
 
-There is no acceleration of the vector normal to the slices 
-The curvature of the spatial section is the curvature of  
   Gauss-Codacci relates                       to 
 

h̄µ⌫

˜̄gµ⌫ = a2ḡµ⌫ ḡµ⌫ = �n̄µ ⌦ n̄⌫ + h̄µ⌫
3R̄↵�µ⌫

4R̄↵�µ⌫
3R̄↵�µ⌫

See Eric Gourgoulhon’s review on 1+3/ADM 

r̄µn̄⌫ = 0

n̄µr̄µn̄⌫ = 0



Splitting perturbation equation���

The equations obtained by hand (Einstein equations) are typically of the form 

�00 +
a0

a
�0 + @i@

i = 0

What is the geometrical meaning of 
 
-  Time derivative ?    Answer :     

-  Partial derivative ?  Answer :  an induced covariant derivative     

Ln̄� = �0

Dµ� ⌘ h⌫
µr⌫�

L2
n̄�+

a0

a
Ln̄�+DµD

µ� = 0

rµ� = �n̄µLn̄�+Dµ�
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Examples of implementation in xPand���
http://www2.iap.fr/users/pitrou/xpand.htm 
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Benchmarking, and press review���
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Perturbation of Ricci Scalar in Newton gauge

Jolyon Bloomfield, MIT (xAct tutorial)  



Extensions���
-We can have non scalar perturbations 
 

-Can be extended to anisotropic spacetimes.     
 

-Perturbation of fluids possible   
(velocity constrained by normalization) 
 
  



Conclusion���

-Tensor algebra is helpful whenever your brain saturates 
 
-Action variation is piece of cake. Nobody should ever sweat on it… 
 
 
 
 
 
-General method for cosmological perturbations 
  
    Can be implemented in any package for abstract tensor manipulations 
    Not restricted to GR 
 
    Extension needed: null geodesics  
    (geodesic equation, geodesic deviation equation) 1+3 -> 1+1+2  

Thanks a lot for your attention 
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1+3 Background slicing made visual���



More subtle details if there is time���

-We have non scalar perturbations 
 
 
 
 
 
-General equations are second order. We need to commute induced derivatives and 
spatial derivatives (time and space derivative). 
 
 
 
 
-Can be extended to anisotropic spacetimes.  
    Extrinsic curvature non-vanishing (symmetric trace-free part) 
    Meaning of homogeneity from Killing vector fields 
 
 
-Perturbation of fluids require to ensure the norm of relativistic velocity is -1. Only three 
degrees of freedom. 
 
 
 
  

Bµ, Eµ Hµ⌫

r̄µn̄⌫ = �µ⌫


