### Norihiro Tanahashi [DAMTP]

with H. S. Reall & B. Way

arXiv: 1406.3379 1409.3874

# Causality Hyperbolicity

- & Shock formation
- in Lovelock Theories

### Causality, Hyperbolicity & Shock formation in Lovelock Theories

• Lovelock Theories

= GR + (higher-curvature corrections)

➢ EoM up to 2<sup>nd</sup> derivatives → Avoids ghost instability
 ➢ From string theory?

- GR: Gravity propagate at *c*
- Lovelock: Faster/slower propagation than c

#### → Causality in Lovelock theories? Does EoM remain hyperbolic?

### Causality, Hyperbolicity & Shock formation in Lovelock Theories

- Causality in Lovelock theories?
  - Can we define causality in this theory?
  - Can graviton escape from black hole interior?
- Does EoM remain hyperbolic?
  - Hyperbolic EoM = Wave equation
  - Determined by principal part of EoM
    - GR: Guaranteed to be hyperbolicLovelock: ?
- Shock formation due to variable sound speed?

## Contents

- 1. Introduction
  - Lovelock theories
  - Characteristics
- 2. Questions
  - Can graviton escape from black hole interior?
  - Propagation on *plane wave solutions*
  - Propagation *around black holes*
  - Shock formation?
- 3. Summary

## Contents

- 1. Introduction
  - Lovelock theories
  - Characteristics
- 2. Questions
  - Can graviton escape from black hole interior?
  - Propagation on *plane wave solutions*
  - Propagation *around black holes*
  - Shock formation?
- 3. Summary

### Introduction: Lovelock theories

• Lovelock theories in *d* dimensions ( $p \le (d-1)/2$ )

$$\mathcal{L} = R - \sum_{p} 2k_{p} \delta_{d_{1}...d_{2p}}^{c_{1}...c_{2p}} R_{c_{1}c_{2}}^{d_{1}d_{2}} \dots R_{c_{2p-1}c_{2p}}^{d_{2p-1}d_{2p}}$$
$$= R - 8k_{2} \left( R^{2} - 4R_{ab}R^{ab} + R_{abcd}R^{abcd} \right) + \cdots$$
$$\left( \delta_{d_{1}...d_{n}}^{c_{1}...c_{n}} \equiv n! \delta_{[d_{1}}^{c_{1}} \dots \delta_{d_{n}]}^{c_{n}} \right)$$

• EoM = Einstein eq. + correction

$$E^a_{\ b} \equiv G^a_{\ b} + B^a_{\ b} = 0$$

where

$$\boldsymbol{B}^{\boldsymbol{a}}_{\boldsymbol{b}} = \sum_{p \ge 2} k_p \delta^{ac_1 \dots c_{2p}}_{bd_1 \dots d_{2p}} R_{c_1 c_2} {}^{d_1 d_2} \dots R_{c_{2p-1} c_{2p}} {}^{d_{2p-1} d_{2p}}$$

6

### Introduction: Characteristics

• A signal propagates on *characteristic surface* 

EoM of 
$$\psi$$
:  $0 = \nabla^2 \psi = g^{tt} \partial_t^2 \psi + \cdots$ 

 $\begin{bmatrix} \bullet \ g^{tt} \neq 0 : & \partial_t^2 \psi \text{ uniquely determined} \\ & \rightarrow \text{ usual time evolution} \\ \bullet \ g^{tt} = 0 : & \partial_t^2 \psi \text{ non-unique} \\ & \rightarrow t = \text{const. surface is characteristic} \end{bmatrix}$ 

### **Introduction: Characteristics**

- $g^{tt} = 0$  :  $\partial_t^2 \psi$  non-unique  $\rightarrow t = \text{const. surface is$ *characteristic* $}$
- Characteristic surface is a possible wave front



### **Introduction:** Characteristics

Characteristics in Lovelock theories

[Aragone '87] [Choquet-Bruhat'88]



### Questions

- Can graviton escape from black hole interior?
   ↑ No: Killing horizon is characteristic surface
- 2. Propagation on *plane wave solutions*
- 3. Propagation around black holes
  - Does it obey causality?
  - Is hyperbolicity maintained?

### 2. Propagation on *plane wave solutions*

More generally, we consider

#### *Ricci-flat type N spacetimes*

as backgrounds.

Only null( $\ell$ )-angular components of Riemann tensor are nonzero:

$$R_{\ell i \ell j} \equiv \Omega_{ij}$$

✓ Example: Plane wave solution [Boulware-Deser '85]  $ds^2 = a_{ij}x^ix^jdu^2 + 2dudv + \delta_{ij}dx^idx^j$  $\Rightarrow R_{\ell i \ell j} \propto a_{ij}$ 

#### 2. Propagation on *Ricci-flat type N spacetimes*

Proposition:

Characteristic surfaces are null w.r.t. "effective metrics":

$$G_{I}^{ab} = g^{ab} + \omega_{I} \ell^{a} \ell^{b} \qquad \begin{pmatrix} I = 1, \dots, \frac{1}{2} d(d-3) \\ \omega_{I} = \omega_{I}(\Omega_{ij}) \end{pmatrix}$$

$$\checkmark \det P = \prod_{I} G_{I}^{ab} \xi_{a} \xi_{b} = 0$$

- $\checkmark \ell$  : null w.r.t.  $G_I$ 
  - $\Rightarrow$  Characteristic cones tangent to  $\ell$
- ✓ Nested characteristic cones
- ✓ Causality w.r.t. the largest cone



### 3. Propagation *around black holes*

• Static, maximally symmetric black holes

$$ds^{2} = -f(r)dt^{2} + f(r)^{-1}dr^{2} + r^{2}d\Sigma^{2}$$

• Proposition:

Characteristic surfaces are null w.r.t. "effective metrics":

$$G^{A}_{\mu\nu}dx^{\mu}dx^{\nu} = -f(r)dt^{2} + f(r)^{-1}dr^{2} + \frac{r^{2}}{c_{A}(r)}d\Sigma^{2}$$

A : Tensor, Vector, Scalar modes

 $c_A(r)$ : (Propagation speed)<sup>2</sup> in  $\Sigma$  directions

Oct 5, 2015

### 3. Propagation *around black holes*

$$G^{A}_{\mu\nu}dx^{\mu}dx^{\nu} = -f(r)dt^{2} + f(r)^{-1}dr^{2} + \frac{r^{2}}{c_{A}(r)}d\Sigma^{2}$$

0



• Small BH  $\Rightarrow c_A < 0$  near horizon

 $\Rightarrow$  Violation of hyperbolicity

$$\begin{pmatrix} -\frac{\partial^2}{\partial t^2} + \frac{\partial^2}{\partial r_*^2} + \frac{f(r)c_A(r)}{r^2} \frac{\partial^2}{\partial \Sigma^2} \end{pmatrix} \Psi \equiv f(r)G_A^{\mu\nu}\partial_\mu\partial_\nu\Psi$$
$$\begin{pmatrix} \frac{\partial^2}{\partial \Sigma^2} \simeq -l^2 \end{pmatrix}$$

- Initial value problem is not well-posed
  - $\checkmark \omega^2 = -\alpha^2 l^2 \implies$  growing mode  $\propto \exp(\alpha l t)$
  - ✓ Perturb initial data with this mode as

$$\begin{split} \delta g_{\mu\nu}(t,r,x) &\sim e^{-\sqrt{l}} e^{\alpha lt} \quad \Rightarrow \quad \left\{ \begin{array}{ll} \bullet \ t = 0 : \ \delta g, \partial^n \delta g = 0 \\ \bullet \ t > 0 : \ \delta g \to \infty \end{array} \right. \end{split}$$
with  $l \to \infty$ 

Solution is not continuous w.r.t. initial data
 No solution exists except for special initial conditions

### Answers

- 1. Can graviton escape from black hole interior?
  - $\uparrow$  No: Killing horizon is characteristic surface
- 2. Propagation on *plane wave solutions* 
  - Characteristics = Null w.r.t. effective metrics
  - ✓ Causality w.r.t. the largest cone
- 3. Propagation around black holes
  - Characteristics = Null w.r.t. effective metrics
  - ✓ Hyperbolicity violation near small BH horizons

# Contents

#### 1. Introduction

- Lovelock theories
- Characteristics

#### 2. Questions

- Can graviton escape from black hole interior?
- Propagation on plane wave solutions
- Propagation *around black holes*
- Shock formation?

#### 3. Summary

## Shock formation

- Sound speed  $\neq$  const.
- Waveform distortion  $\rightarrow$  Shock formation?

ex.) Burgers' equation  $\partial_t u + u \ \partial_x u = 0$ 



## Shock formation

- Propagation of discontinuity in  $\partial^2 g_{ab}$ 
  - ➢ GR: Amplitude obeys linear eq.
  - Lovelock: Amplitude obeys nonlinear eq.
    Amplitude blow up?



• EoM in Lovelock

$$E_{ab} \equiv G_{ab} + B_{ab} = 0$$

- Take discontinuous part  $[E_{ab}] = P_{ab}{}^{cd} \left[\partial_t^2 g_{cd}\right] = 0 \quad (discontinuous part)$   $\Rightarrow \left[\partial_t^2 g_{cd}\right] = \Pi(x^i) r_{cd} \quad (P \cdot r = 0)$
- Transport equation of amplitude  $\Pi(x^i)$

 $[\partial_t E_{ab}] = 0 \implies \dot{\Pi} + M \Pi + N \Pi^2 = 0$   $N = 4 \sum_{n \ge 2} p(p-1)k_p \,\delta^{0ikmpr_5\dots p_{2p}}_{1jlnqs_5\dots s_{2p}} \,\Gamma^0_{ij'} g^{jj'} r^l_k r^n_m r^q_p \,R^{s_5s_6}_{r_5r_6}\dots R^{s_{2p-1}s_{2p}}_{r_{2p-1}r_{2p}}$ 

$$\dot{\Pi} + M \Pi + N \Pi^2 = 0$$

$$\swarrow \left[ \Phi(s) = \int_0^s M(s') ds' \right]$$

$$\Rightarrow \quad \Pi(s) = \frac{\Pi(0) e^{-\Phi(s)}}{1 + \Pi(0) \int_0^s N(s') e^{-\Phi(s')} ds'}$$

• GR:  $N = 0 \implies \Pi(s)$  finite unless  $e^{-\Phi}$  diverges • Lovelock:  $N \neq 0 \implies \Pi(s)$  diverges at finite s for large  $|\Pi(0)|$ Shock formation

# Shock formation

- Ricci-flat type N spacetimes
  - $\operatorname{Along} \ell^{\mu}$ :  $N = 0 \rightarrow \operatorname{No shock}$
  - Along other directions:  $N \neq 0 \rightarrow$  Shock formation

$$\Pi(u) \sim \frac{1}{u - u_0}$$



# Shock formation

- ✓ Does a shock formation imply pathology?
  - Violation of weak cosmic censorship?
     Shock = Naked singularity
  - Stability of Minkowski in Lovelock theories? Flat background  $\rightarrow N = 0$ , stable?
  - Shock = Weak solution in Lovelock theory Shock formation from smooth initial data?

# Summary

- Characteristics in Lovelock theories
  - Can graviton escape from black hole interior?  $\leftarrow$  No
  - Propagation on plane wave & BH backgrounds
    - Characteristics = Null w.r.t. effective metrics
    - ✓ Causality w.r.t. the largest cone

✓ Hyperbolicity violation near small BH horizons

- Shock formation in Lovelock theories
  - ✓ ∃ nonlinear term, shock forms for large initial data
- **?**: Does hyperbolicity occur in time evolution?
- **?**: Shock formation & evolution from smooth data?
- **?**: Stability of Minkowski?
- **?**: Shock formation in scalar-tensor theories?