
  

Existence and disappearance of conical Existence and disappearance of conical 

singularities in GLPV theoriessingularities in GLPV theories

Antonio De Felice

Yukawa Institute for Theoretical Physics, YITP, Kyoto U.

2nd Mini-Workshop on Gravity and Cosmology

Paris, Oct 7, 2015

[with prof. Tsujikawa, prof. Kase, prof. Koyama]



  

● In/ation: geometric e1ect/scalar 3eld or beyond SM

● Dark Energy (and dark matter): large distance 

modi3cation of gravity?

● Theory of quantum gravity [Boulware, Deser: PRD 1972]

Introduction - going beyond GR



  

Dark energy models

● Models have been proposed to discuss dark energy

● f(R) models [Capozziello, 2002]

● Extra dimensionals models [Dvali, Gabadadze, Porrati 2000]

● Massive gravity/bigravity [de Rham, Gabadadze, Tolley 2010]

● Quintessence

● Extended scalar 3eld Lagrangians [Horndeski 1974; De1ayet et al 2011]



  

Horndeski theories

● Most general scalar-tensor theories with 2nd order eoms

● It avoids Ostrogradski instability

● Only one single scalar is added

● Avoids unwanted/unstable degrees of freedom

● It includes gravitational theories: BD, f(R), Galileons, etc.

● Beyond Horndeski?  



  

ADM decomposition of space-time

● Based on 3+1 decomposition of space-time [Arnowitt et al, 1959]

● Having a timelike scalar 3eld we can choose uniform 3eld gauge 

● ADM splitting of 4D into 1+ 3,

● Introducing                     for the 3D metric

● Introducing 
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Beyond Horndeski: GLPV theory
[Gleyzes, Langlois, Piazza, Vernizzi 2014]

● Introduce the action             

● Build up ADM

● Horndeski theory as a sub-theory:

S=∫d
3
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Phenomenology

● Hamiltonian analysis (3 dof, no extra ghosts)
[Gleyzes et al 2014; Lin et al 2014; De1ayet et al 2015]

● Cosmology: existence of late-time acc. solutions

●                    [Tsujikawa 2015]

● Matter 3elds get modi3ed speed of prop.
[ADF, Koyama, Tsujikawa 2015]

● Perturbation could be massive   [ADF, Koyama, Tsujikawa 2015] 

Geff <GN



  

Solar system constraints?

● The action originally found initially for time-like 3eld

● Find the action in covariant form, undoing gauge

● Extend it to generic scalar 3eld dynamics, e.g.

ℒ 2=A2(ϕ , X ), X=∇α ϕ∇αϕ ,

ℒ3=(C3+2 XC3, X )∇
2ϕ+X C3,ϕ ,

A
3
=2|X|3 /2(C3, X+

B4, ϕ

X ),
ℒ 4=ℒ 4(A4,B4, R , X ,∇μϕ)



  

Phenomenology
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● Assume now spherical symmetry

● General functions 

● Fix background gauge,  

● Solve the eoms, look for bounds

Spherically symmetric space-time
[ADF, Kase, Tsujikawa 2015]

A4=A4(ϕ , X ) , B4=B4(ϕ , X )

ϕ=ϕ(r) ,
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Vacuum solution

● Consider vacuum solution and exact solutions 

● Solutions

● Ricci scalar

● Singularity is present even in the limit M = 0

ϕ '=0

exp(2Ψ)=exp(−2Φ)=1+αH+ Λ
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Nature of the singularity

● Exact solution is strong hint to prove the existence of a 

singularity

● What kind of singularity is it? Consider M = 0, L = 0

 

● Conical singularity, unless  

● With matter 3eld?
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Interior Schwarzschild solution

● Consider matter             for            , 0 otherwise

● For exact solutions consider 

● Solve the eom

● Singularity remains

ρ=ρc r⩽r0

ϕ '=0
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General behaviour?

● Consider now general setup

● Assume analytic behaviour for the 3elds

● Expand around the origin

● 0-0 eom around the origin  conical singularity remains: →
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Trying to excape the singularity

● Let us try to avoid the singularity

● We need then 

● For X  0, then→

● 1) Solve                         for some values of       , if exist 

● 2) Theories which are Horndeski for X = 0

αH=0

αH=α(ϕc ,0)+O(X )

α(ϕ̄c ,0)=0 ϕ̄c



  

First option

●                   implies choosing two BCs at r = 0 for the 3eld

● No degrees of freedom left for the 3eld at in3nity

● Second order ODEs on the background

● The system is over-constrained

ϕ ' (r=0)=0, ϕ(r=0)=ϕ̄c

α(ϕ̄c ,0)=0



  

Second option

● In the Taylor expansion of aH in X the 3rst term vanishes

● This condition is not protected by symmetries

● Need a particular functional form for Lagrangian

● Protected against quantum corrections?

● If present, would they spoil the compact objs solutions?



  

Classical way-out

● Considering classical regime 

● Toy model

● Possible to 3nd Vainshtein mechanism

A2=−X /2 , C3=0 ,

A4=−
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2
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Conclusions

● General functional form of GLPV does not allow static 

spherically symmetric compact objects

● Possible to 3nd classical action which avoid the problem

● Stable against quantum corrections?

● Possible to implement the Vainshtein mechanism

● Cosmology? Heavy perturbation oscilations still existing?
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