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Fierz-Pauli theory (1939)
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I Field eqs. for a massive graviton that has 5 degrees of freedom.
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. Scalar constraint h = 0.

I
It is the only linear massive gravity theory free of ghost.

I
But it needs to be generalized to a non-linear theory.
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The dRGT massive gravity theory
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I No BD ghost.
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Linearized field equations around a background solution
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where hµ⌫ = gµ⌫ � gµ⌫ .
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The dRGT massive gravity theory

Linearized field equations around a background solution
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Method 1: Variation of the matrix S

To linearized the field equations we first need to obtain the

perturbed matrix S.

It can be done using 2 di↵erent methods.

Sylvester equation: AX �XB = C

S

µ
⌫ (�S)

⌫
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common eigenvalues () det
�
X
�
6= 0.

Cayley-Hamilton theorem
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I Solution for �S i↵ X ⌘ e31 + e1S
2 is invertible.
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Method 2: Redefined fluctuation variables

Redefinition of the perturbation variable
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I The other variables (�S, �S�1) can then be expressed as a
function of �g0��.

�g0�� is also a solution of the Sylvester equation:

g

�1
�g = S g

�1
�g

0 + g

�1
�g

0
S

I There is a unique solution for g�1
�g

0 i↵ S and �S do not have

common eigenvalues.

I It decreases the number of terms we have to deal with: the
variation of �S is hidden in �g

0
��.
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Search for a scalar constraint

Counting the degrees of freedom

. 4 vector constraints: r⌫
�Eµ⌫ = 0

. Scalar constraint: unlike in the F-P theory, it cannot be obtained
from a linear combination of gµ⌫�Eµ⌫ and rµr⌫

�Eµ⌫ .

Generalised traces and divergences of the field equations

1. We define all possible ways of tracing �Eµ⌫ with S

µ
⌫ :

�i ⌘ [Si]µ⌫ �Eµ⌫ , 0  i  3

 i ⌘ [Si]µ⌫r⌫r�
�E�µ 0  i  3 .

2. Find a linear combination of these 8 scalars for which the 2nd
derivative terms vanish :

3X

i=0

(ui �i + vi i) ⇠ 0,

Laura BERNARD Massive graviton on arbitrary backgrounds 07/10/2015



Search for a scalar constraint

Counting the degrees of freedom

. 4 vector constraints: r⌫
�Eµ⌫ = 0

. Scalar constraint: unlike in the F-P theory, it cannot be obtained
from a linear combination of gµ⌫�Eµ⌫ and rµr⌫

�Eµ⌫ .

Generalised traces and divergences of the field equations

1. We define all possible ways of tracing �Eµ⌫ with S

µ
⌫ :

�i ⌘ [Si]µ⌫ �Eµ⌫ , 0  i  3

 i ⌘ [Si]µ⌫r⌫r�
�E�µ 0  i  3 .

2. Find a linear combination of these 8 scalars for which the 2nd
derivative terms vanish :

3X

i=0

(ui �i + vi i) ⇠ 0,

Laura BERNARD Massive graviton on arbitrary backgrounds 07/10/2015



More details on the search for a scalar constraint
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�Eµ⌫ ,  i ⌘ [S
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Find a linear combination of these 8 scalars for which the 2nd derivative

terms vanish :
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26X
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↵i@i = 0,

@i = {r⇢r� h
⇢�
, ..., [S3]⇢� [S3]µ⌫ r⇢r� hµ⌫}

I
↵i = 0 : 26 equations for 7 unknowns {ui, vi} , only the trivial
solution.

I All the @i are not all independent from each other : non trivial
identities (syzygies) linking them =) Reduces the number of
equations to be solved.
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A particular case: the beta 1 model

We assume �2 = �3 = 0 and keep �0, �1 6= 0 and fµ⌫ arbitrary.

Field equations
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I
It is only possible in the �1 model.

I It can be used to eliminate any occurrences of S in the linearized
field equations.
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A particular case: the beta 1 model

. In the �1 model, we can express the linearized field equations as
a function of gµ⌫ and its curvature.

. We now take these equations as our starting point, no

more assuming that gµ⌫ is a background solution.

The fifth scalar constraint

�m

2
�1 e4

2
�0 � e3 0 + e2 1 � e1 2 + 3 = 0 .

I
Massive graviton (with 5 dof) propagating in a single

arbitrary background.
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Beyond the beta 1 model: the general case
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I
It is not a covariant constraint but all the second

time derivatives acting on the lapse and the shift

vanish.
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Applications

I For flat and Einstein space-times the constraint reduces to the
expected one h = 0.

I Application to cosmology (�1 model): The equations of motion
are those of a massive graviton propagating in an arbitrary
FLRW space-time.

I We used this formalism to obtain the linearized field equations in
bimetric theories and study the covariant constraints.
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Conclusion

. Linearized equations of massive gravity (and bi-gravity) in the
general case.

. Consistent theory for a massive graviton propagating in a single
arbitrary background metric (�1 model).

. Five covariant constraints in a metric formulation, when �3 = 0.

. Non-covariant scalar constraint when �3 6= 0 and in bimetric
theories.
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