Combination single top + $t\bar{t}$ $tH \rightarrow 1\ell 3b$

New $t\bar{t}$ -signal samples

Lorenzo Basso

Optimisation

• LEPTONS: $|\eta| < 2.5(2.4)$ for $e/\mu,$ then:

- Tight: $p_{\ell}^T > 30$ GeV, ISO: cone04, $I_{rel} < 0.10(0.12) \ e/\mu$
- Loose: $10 < p_{\ell}^T < 30$ GeV, ISO: cone04, $I_{rel} < 0.20$
- JETS: $p_j^T > 40 \text{ GeV}, |\eta| < 2.4, 1/\text{EEoverHE} > 0.15$

Selections:

- 2 $M^T(\ell\nu) > 50 \text{ GeV}$
- 3 $N_J \ge 3$ (J =light and b jets)

 $N_b \equiv 3 \text{ (CSVM)}$

Here, MVA or Cut&Count with

- 80 GeV < $|M(bb) M_H| < 205$ GeV
- loose top reco: $M^T(b \, \ell \nu) < 230 \text{ GeV}$

MVA – BDT

- training on sum of signals (naive combination)
- one training each for κ_{hut} and κ_{hct}
- compare κ_{hut} vs. κ_{hct} training by applying reader on sum of signals
- tried various asymmetry variables: $Q_{\ell}, Q_{\ell} \times p_{\ell}^{T}, Q_{\ell} \times |\eta_{\ell}|$: no difference

Variables for κ_{hut}

Variables for $\overline{\kappa_{hut}}$

Filled after the $\#b \equiv 3$ cut.

11 Variables with relative importance:

Variable	Importance
M(H)	1.9110^{-1}
Q_ℓ	1.4710^{-1}
$M(jb_2)$	1.2510^{-1}
H_T	9.1010^{-2}
$M(\ell b)$	9.0510^{-2}
$\eta(H)$	8.4110^{-2}
$p^T(H)$	7.7810^{-2}
$p^T(top)$	7.6110^{-2}
M(top)	5.7010^{-2}
H_T^{rel}	3.7810^{-2}
$p^T(b_2)$	2.2710^{-2}

where
$$H_T^{rel} \equiv (p^T(H) + p^T(top))/H_T$$

κ_{hut} : overtraining

Some large correlations, but if removed BDT loses discriminating power

Variables for κ_{hct}

Lorenzo Basso (IPHC)

July 08, 2015 8 / 20

Variables for κ_{hct}

Filled after the $\#b \equiv 3$ cut.

9 Variables with relative importance:

Variable	Importance		
$M(jb_2)$	3.1910^{-1}		
M(H)	1.9810^{-1}		
H_T	1.5010^{-1}		
$M(\ell b)$	8.5810^{-2}		
H_T^{rel}	7.1910^{-2}		
$p^T(H)$	5.3910^{-2}		
$p^T(b_2)$	4.9910^{-2}		
$p^T(top)$	3.8410^{-2}		
M(top)	3.2910^{-2}		

κ_{hct} : overtraining

Some large correlations, but if removed BDT loses all discriminating power

BDT output

 κ_{hut}

 κ_{hct}

MVA: reading of sum of signals

Cut-and-count

Cut	Sum Bg	κ_{hct}	κ _{hut}	ttbar κ_{hct}	ttbar κ_{hut}
no cuts	$(18.62 \pm 0.03) 10^9$	21261 ± 21	164242 ± 57	136150 ± 65	136201 ± 65
$\#\ell \equiv 1, 0$ loose	$(5858 \pm 1) 10^6$	2763 ± 8	21995 ± 20	42995 ± 36	42950 ± 36
$M^{T}(\ell\nu) > 50$	$(5573 \pm 1) 10^6$	1832 ± 6	14434 ± 16	$\textbf{27645} \pm \textbf{29}$	$\textbf{27421} \pm \textbf{29}$
$\#j \ge 3$	$(5262 \pm 7) 10^3$	575 ± 4	3610 ± 8	7675 ± 15	7579 ± 15
$\#b \equiv 3$	$\textbf{77688} \pm \textbf{389}$	112 ± 2	628 ± 3	1184 ± 6	934 ± 5
80 < M(bb) < 205	70581 ± 368	109 ± 2	601 ± 3	1096 ± 6	897 ± 5
$80 < M^T(b\ell\nu) < 230$	64942 ± 352	103 ± 1	560 ± 3	1016 ± 6	843 ± 5

Table: Signal

Cut	Sum Bg	T+jets	THq	TT+jets	W+jets
no cuts	$(18622 \pm 0.03) 10^6$	$(28.11 \pm 0.02) 10^6$	17526 ± 6	$(32322 \pm 7) 10^3$	$(18562 \pm 3) 10^6$
$\#\ell \equiv 1, 0$ loose	$(5858 \pm 1) 10^6$	$(3162 \pm 5.2) 10^3$	6074 ± 3	$(9245 \pm 4) 10^3$	$(5845 \pm 1) 10^6$
$M^{T}(\ell\nu) > 50$	$(5573 \pm 1) 10^6$	$(2225 \pm 4) 10^3$	4043 ± 3	$(5966 \pm 3) 10^3$	$(5565 \pm 1) 10^6$
$\#j \ge 3$	$(5262 \pm 7) 10^3$	$(255 \pm 1) 10^3$	1664 ± 2	$(3256 \pm 2) 10^3$	$(1749 \pm 7) 10^3$
$\#b \equiv 3$	77688 ± 389	1138 ± 113	401 ± 1	$\textbf{75883} \pm \textbf{371}$	266 ± 34
80 < M(bb) < 205	70581 ± 368	802 ± 93	337 ± 1	69231 ± 355	210 ± 30
$80 < M^T(b\ell\nu) < 230$	64942 ± 352	651 ± 84	270 ± 1	63866 ± 341	154 ± 26

Table: Background

3 × 1

Significance

Cut	κ_{hct}	κ_{hut}	ttbar κ_{hct}	ttbar κ_{hut}	comb κ_{hct}	comb κ_{hut}
no cuts	0.156	1.204	0.998	0.998	1.154	2.202
$\#\ell \equiv 1$	0.036	0.287	0.562	0.561	0.598	0.849
$M^T(\ell\nu) > 50$	0.025	0.193	0.370	0.367	0.395	0.561
$\#j \ge 3$	0.251	1.573	3.344	3.301	3.594	4.872
$\#b \equiv 3$	0.402	2.246	4.215	3.331	4.611	5.550
80 < M(bb) < 205	0.408	2.254	4.094	3.354	4.496	5.580
$80 < M^T(b\ell\nu) < 230$	0.403	2.188	3.956	3.286	4.353	5.447

($t\bar{t}h$ -background still missing: $\mathcal{O}(1\%)$)

MVA highest significances when each signal is trained against itself:

$$\kappa_{hut} = 5.98\sigma, S = 1297.6, B = 45712.6,$$

 $\kappa_{hct} = 5.41\sigma, S = 1180.5, B = 46393.7$

MVA: 2D limits

э

・ロト ・日下・ ・ ヨト・

- NEW: OK separate training for different couplings
- tiny improvement with BDT for inclusive sample (a bit better for hct)

Backup slides

Lorenzo Basso (IPHC)

 $\langle \Box \rangle \langle \Box \rangle$

Number of b-jets

PT of Higgs

