

Lawrence Berkeley National Laboratory

- Introduction
- Overview of ATLAS charged particles reconstruction
 - Quick tour of offline charged particles reconstruction
 - "real-time" (trigger-level) reconstruction deserves its own seminar
 - Basic performance in simulation and collisions data
 - Special setups
- Recent developments and challenges
- A look into the future: HL-LHC

The Large Hadron Collider

- Last stage of accelerator complex at CERN (protons, Pb ions)
- Protons up to 7.5 TeV per beam: √s = 13 TeV
- ~11kHz revolution
 frequency
- ~1300(2500)
 bunches separated
 by 50(25)ns

The Large Hadron Collider

S. Pagan Griso

LHC operations timeline

3rd April 2014

S. Pagan Griso, LBNL

5

The ATLAS detector

S. Pagan Griso

Physics output

- More than 450 papers submitted up to date
 - About 200 measurements
 - Higgs boson observation
 - About 230 (null) searches
 - Papers documenting performance of detector, reconstruction, simulation

	Model	e, μ, τ, γ	Jets	$E_{\rm T}^{\rm miss}$	∫£ dt[fb ⁻	Mass limit $\sqrt{s} = 7$ T	$\sqrt{s} = 8 \text{ TeV}$	Reference
Inclusive Searches	$\begin{array}{l} \text{MSUGRACMSSM} \\ \bar{q}\bar{q}, \bar{q} \rightarrow q_{11}^{21} \\ \bar{q}\bar{q}, \bar{q} \rightarrow q_{11}^{21} \\ (compressed) \\ \bar{q}\bar{q}, \bar{q} \rightarrow q_{11}^{21} \\ \bar{s}\bar{s}, \bar{s} \rightarrow qq(\ell') \\ (r) \\ \bar{s}\bar{s}, \bar{s} \rightarrow qq(\ell') \\ (r) \\ \bar{s}\bar{s}, \bar{s} \rightarrow qq(\ell') \\ (r) \\ \bar{s}\bar{s}, \bar{s} \rightarrow qq(\ell') $	0-3 $e, \mu/1-2 \tau$ 0 mono-jet 2 e, μ (off-Z) 0 0-1 e, μ 2 e, μ 1-2 τ + 0-1 ℓ 2 γ γ 2 e, μ (Z) 0	2-10 jets/3 2-6 jets 1-3 jets 2-6 jets 2-6 jets 2-6 jets 0-3 jets 0-2 jets 2 jets 2 jets 2 jets mono-jet	b Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20 20 20 20.3 20.3 2	-8 890 GeV 105-460 GeV 790 GeV 1.33 To 1.56 Te 1.35	1.5 TeV mc/j-mc/j mc/j-ac/f) - GAV (m/ * gan. i) - mc/** gan. i) - mc/** (gan. i) - GAV wc/j-ac/Av	1507.05525 1405.7875 1507.05525 1500.03280 1405.7875 1507.05525 1407.05525 1407.05525 1407.05525 1407.05540 1507.05540 1507.05540 1507.05540 1507.05540
3 rd gen. § med.	$\begin{array}{c} \tilde{g}\tilde{g}, \tilde{g} \rightarrow b \tilde{b} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow t \tilde{\ell} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow t \tilde{\ell} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow t \tilde{\ell} \tilde{\chi}_{1}^{0} \end{array}$	0 0 0-1 e,μ 0-1 e,μ	3 b 7-10 jets 3 b 3 b	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	1.25 TeV 1.1 TeV 1.34 Tr 1.34 Tr	m(l ² ₁)<400 GeV m(l ² ₁)<350 GeV V m(l ² ₁)<400 GeV / m(l ² ₁)<400 GeV	1407.0600 1308.1841 1407.0600 1407.0600
3rd gen. squarks direct production	$ \begin{array}{l} & b_1, b_1 \rightarrow b \tilde{\chi}_1^0 \\ & b_1 b_1, b_1 \rightarrow b \tilde{\chi}_1^0 \\ & \tilde{r}_1 \tilde{r}_1, \tilde{r}_1 \rightarrow b \tilde{\chi}_1^0 \\ & \tilde{r}_1 \tilde{r}_1 (n \text{attracl GMSB}) \\ & \tilde{r}_2 \tilde{r}_2, \tilde{r}_2 \rightarrow \tilde{r}_1 + Z \end{array} $	0 2 e, μ (SS) 1-2 e, μ 0 e, μ 2 e, μ (Z) 3 e, μ (Z)	2 b 0-3 b 1-2 b 0-2 jets/1-2 nono-jet/c-ta 1 b 1 b	Yes Yes Yes Yes Jg Yes Yes Yes	20.1 20.3 1.7/20.3 20.3 20.3 20.3 20.3 20.3	100-520 GeV 2/25-440 GeV 90-191 GeV 220-460 GeV 90-211 GeV 210-700 GeV 90-240 GeV 150-580 GeV 230-600 GeV	$\begin{split} m(\tilde{\epsilon}_{1}^{2}) &= SO GeV \\ m(\tilde{\epsilon}_{1}^{2}) &\geq m(\tilde{\epsilon}_{1}^{2}) \\ &= 2m(\tilde{\epsilon}_{1}^{2}) \\ &= 2m(\tilde{\epsilon}_{1}^{2}) \\ &= 2m(\tilde{\epsilon}_{1}^{2}) \\ &= 2GV \\ m(\tilde{\epsilon}_{1}^{2}) \\ &= 10 GV \\ m(\tilde{\epsilon}_{1}^{2}) \\ &= 5S GeV \\ m(\tilde{\epsilon}_{1}^{2}) \\ &= 5S GeV \\ m(\tilde{\epsilon}_{1}^{2}) \\ &= 5S GeV \\ \end{split}$	1308.2631 1404.2500 1209.2102,1407.0583 1506.08616 1407.0508 1403.5222 1403.5222
EW direct	$ \begin{array}{l} \tilde{t}_{1,\mathbf{R}}\tilde{t}_{1,\mathbf{R}},\tilde{t} \rightarrow t\tilde{x}_{1}^{0} \\ \tilde{x}_{1}^{*}\tilde{x}_{1}^{*},\tilde{x}_{1}^{*} \rightarrow t^{*}r(\tilde{r}) \\ \tilde{x}_{1}^{*}\tilde{x}_{1}^{*},\tilde{x}_{1}^{*} \rightarrow t^{*}r(\tilde{r}) \\ \tilde{x}_{1}^{*}\tilde{x}_{1}^{*},\tilde{x}_{1}^{*} \rightarrow t^{*}r(\tilde{r}) \\ \tilde{x}_{1}^{*}\tilde{x}_{2}^{0} \rightarrow W_{1}^{0}\tilde{t}_{1}\tilde{x}_{1}^{0} \\ \tilde{x}_{1}^{*}\tilde{x}_{2}^{0} \rightarrow W_{1}^{0}\tilde{t}_{1}\tilde{x}_{1}^{0} \\ \tilde{x}_{1}^{*}\tilde{x}_{2}^{0} \rightarrow W_{1}^{0}\tilde{t}_{1}\tilde{x}_{1}^{0} \\ \tilde{x}_{2}^{*}\tilde{x}_{2}^{*},\tilde{x}_{2}^{*} \rightarrow W_{1}^{0}\tilde{t}_{1}\tilde{x}_{1}^{0} \\ \tilde{x}_{2}^{*}\tilde{x}_{2}^{*},\tilde{x}_{2}^{*} \rightarrow W_{1}^{0}\tilde{t}_{1}\tilde{x}_{1}^{0} \\ \tilde{x}_{2}^{*}\tilde{x}_{2}^{*},\tilde{x}_{2}^{*} \rightarrow W_{1}^{0}\tilde{t}_{1}\tilde{x}_{1}^{0} \\ \tilde{x}_{2}^{*}\tilde{x}_{2}^{*},\tilde{x}_{2}^{*} \rightarrow W_{1}^{0}\tilde{t}_{1}\tilde{x}_{1}^{0} \\ \tilde{x}_{2}^{*}\tilde{t}_{1}\tilde{x}_{2}^{*} \rightarrow W_{1}^{0}\tilde{t}_{1}\tilde{t}_{1}\tilde{t}_{2}^{*} \\ \tilde{x}_{2}^{*}\tilde{t}_{1}\tilde{t}_{2}^{*} \rightarrow W_{1}^{0}\tilde{t}_{1}\tilde{t}_{2}^{*} \\ \tilde{x}_{2}^{*}\tilde{t}_{1}\tilde{t}_{2}^{*} \rightarrow W_{1}^{0}\tilde{t}_{2}^{*} \\ \tilde{x}_{2}^{*}\tilde{t}_{1}\tilde{t}_{2}^{*} \rightarrow W_{1}^{0}\tilde{t}_{2}^{*} \\ \tilde{x}_{2}^{*}\tilde{t}_{1}\tilde{t}_{2}^{*} \rightarrow W_{1}^{0}\tilde{t}_{2}^{*} \\ \tilde{x}_{2}^{*}\tilde{t}_{2}^{*} \rightarrow W_{1}^{0}\tilde{t}_{2}^{*} \\ \tilde{x}_{2}^{*}\tilde{t}_{2}^{*} \rightarrow W_{1}^{0}\tilde{t}_{2}^{*} \\ \tilde{x}_{2}^{*}\tilde{t}_{2}^{*} \rightarrow W_{1}^{0}\tilde{t}_{2}^{*} \\ \tilde{x}_{2}^{*}\tilde{t}_{2}^{*} \rightarrow \tilde{x}_{2}^{*} \\ \tilde{x}_{2}^{*} \rightarrow \tilde{x}_{2}^{*} \rightarrow \tilde{x}_{2}^{*} \\ \tilde{x}_{2}^{*} \rightarrow \tilde{x}_{2}^{*} \end{pmatrix} $	2 e, µ 2 e, µ 2 τ 3 e, µ 2-3 e, µ γγγ e, µ, γ 4 e, µ 1 e, µ + γ	0 0 0-2 jets 0-2 b 0	Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	99325 GeV 140-455 GeV 100-350 GeV 700 GeV	$\begin{split} m(\tilde{t}_{1}^{2}) &= OGV \\ m(\tilde{t}_{1}^{2}) &= OGV (m(\tilde{t},\tilde{v})) &= OS(m(\tilde{t}_{1}^{2})) &= m(\tilde{t}_{1}^{2}) \\ m(\tilde{t}_{1}^{2}) &= OGV (m(\tilde{t},\tilde{v})) &= SS(m(\tilde{t}_{1}^{2})) &= m(\tilde{t}_{1}^{2}) \\ m(\tilde{t}_{1}^{2}) &= m(\tilde{t}_{1}^{2}) &= m(\tilde{t}_{1}^{2}) &= OS(m(\tilde{t}_{1}^{2})) &= SS(m(\tilde{t}_{1}^{2})) \\ m(\tilde{t}_{1}^{2}) &= m(\tilde{t}_{1}^{2}) &= m(\tilde{t}_{1}^{2}) \\ m(\tilde{t}_{1}^{2}) &= m(\tilde{t}_{1}^{2}) &= m(\tilde{t}_{1}^{2}) \\ &= OS(m(\tilde{t}_{1}^{2})) &= OS(m(\tilde{t}_{1}^{2})) \\ m(\tilde{t}_{1}^{2}) &= m(\tilde{t}_{1}^{2}) \\ m(\tilde{t}_{1}^{2}) &= m(\tilde{t}_{1}^{2}) \\ &= OS(m(\tilde{t}_{1}^{2})) \\ &= OS(m(\tilde{t})) \\ &= OS(m(t$	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294, 1402.7029 1501.07110 1405.5588 1507.05493
Long-lived particles	Direct $\hat{x}_{1}^{\dagger}\hat{x}_{1}^{\dagger}$ prod., long-lived \hat{x} Direct $\hat{x}_{1}^{\dagger}\hat{x}_{1}^{\dagger}$ prod., long-lived \hat{x} Stable, stopped g R-hadron Stable \tilde{x}_{1} -hadron GMSB, stable $\tilde{\tau}_{1}$, $\hat{x}_{1}^{0} \rightarrow \tilde{\tau}(\tilde{c}, \tilde{\mu}) \ast \tau$ GMSB, $\hat{x}_{1}^{0} \rightarrow \gamma G$, long-lived \hat{x}_{1}^{0} $\tilde{g}\hat{g}, \hat{x}_{1}^{0} \rightarrow eer/qnv/\mu\muv$ GGM $\tilde{g}\hat{g}, \hat{Y}_{1}^{0} \rightarrow ZG$	Disapp. trk dE/dx trk 0 trk e, µ) 1-2 µ 2 y displ. ee/eµ/µ displ. vtx + je	1 jet 1-5 jets - - - - ts -	Yes Yes Yes Yes	20.3 18.4 27.9 19.1 19.1 20.3 20.3 20.3	270 GeV 482 GeV 532 GeV 537 GeV 435 GeV 1.0 TeV 1.0 TeV	$m(\tilde{t}_1^2)$ - $m(\tilde{t}_1^2)$ -160 MeV, $r(\tilde{t}_1^2)$ =0.2 ns $m(\tilde{t}_1^2)$ - $m(\tilde{t}_1^2)$ -160 MeV, $r(\tilde{t}_1^2)$ -15 ns $m(\tilde{t}_1^2)$ -100 GeV, 10 μ s< $r(\tilde{t}_2^2)$ -100 s 10-tange/650 2< $r(\tilde{t}_1^2)$ -2 ns, SPS8 model 7 $\cdot r(\tilde{t}_1^2)$ -2 No mm, $m(\tilde{t}_2)$ -1 3 EV 6 $\cdot c_r(\tilde{t}_1^2)$ -2 40 mm, $m(\tilde{t}_2)$ -1 1 FeV	1310.3675 1506.05332 1310.6584 1411.6735 1411.6735 1409.5542 1504.05162 1504.05162
RPV	$ \begin{array}{l} LFV p_{P} \rightarrow \mathfrak{r}_r + X, \mathfrak{r}_r \rightarrow e \mu / e \tau / \mu \tau \\ Bilinear \ FPV \ CMSSM \\ \tilde{x}_1^* \tilde{x}_1^*, \tilde{x}_1^* \rightarrow \mathcal{W}_1^*, \tilde{x}_1^0 \rightarrow e e \mathfrak{p}_{\mu}, e \mu \tilde{\nu} \\ \tilde{x}_1^* \tilde{x}_1^*, \tilde{x}_1^* \rightarrow \mathcal{W}_1^*, \tilde{x}_1^0 \rightarrow e r \tilde{\nu}_e, e r \tilde{\nu} \\ \tilde{x}_2^*, \tilde{x}_2^* \rightarrow q q \\ \tilde{x}_2^*, \tilde{x}_2^* \rightarrow q q \\ \tilde{x}_2^*, \tilde{x}_2^* \rightarrow q \tilde{\ell}_1^*, \tilde{t}_1 \rightarrow b s \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b s \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b \ell \end{array} $	$e\mu, e\tau, \mu\tau$ $2 e, \mu$ (SS) $4 e, \mu$ $3 e, \mu + \tau$ 0 $2 e, \mu$ (SS) 0 $2 e, \mu$	0-3 b 	Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	8 750 GeV 450 GeV 817 GeV 817 GeV 817 GeV 950 GeV 950 GeV 0 841 6 TeV	1,7 TeV 4 ['] _{1,11} = 0.11. A ₁₂₂₁₃₃₂₃₃ = 0.07 V m(∂)-m(∂), -r ₁₂₂ <1 mm m(ζ [*] ₁)>0.2×m(ζ [*] ₁), -1 ₁₂₁ = 0 m(ζ [*] ₁)>0.2×m(ζ [*] ₁), -1 ₁₂₁ = 0 BH(j, BH), -BH(i, -0*), m(ζ [*] ₁)>600 GeV BH(j,hv/µ)>20%	1503,04430 1404,2500 1405,5086 1502,05686 1502,05686 1502,05686 1404,250 ATLAS-CONF-2015-026 ATLAS-CONF-2015-015
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{\ell}_{1}^{0}$	0	2 c	Yes	20.3	490 GeV	m(ž ⁰)<200 GeV	1501.01325

- Broad physics program
- Look for / study rare processes
- Need efficient, accurate and fast collision event reconstruction

Event reconstruction

• Task of event reconstruction is to identify objects

Tracker to measure charged particles

e.m. and hadronic calorimeters to measure energy of particles (jets)

Muon spectrometer to detect muons penetrating the rest of the detector

Missing transverse energy for weekly interacting particles (e.g. neutrinos)

• Tracking is a central aspect of the event reconstruction and analysis

In reality ...

In reality ...

 Charged particle trajectories (tracks) traveling in magnetic field are helicoidal

Trajectory defined with 5 parameters ATLAS choice:

- Charged particle trajectories (tracks) traveling in magnetic field are helicoidal, **but**:
- Non-uniform magnetic field
 Equation of motion

$$\frac{d^2x}{dz^2} = \frac{q}{p}R\left[\frac{dx}{dz}\frac{dy}{dz}B_x - \left(1 + \left(\frac{dx}{dz}\right)^2\right)B_y + \frac{dy}{dz}B_z\right]$$
$$\frac{d^2y}{dz^2} = \frac{q}{p}R\left[\left(1 + \left(\frac{dy}{dz}\right)^2\right)B_x - \frac{dx}{dz}\frac{dy}{dz}B_y - \frac{dx}{dz}B_z\right]$$

$$R = \frac{ds}{dz} = \sqrt{1 + \left(\frac{dx}{dz}\right)^2 + \left(\frac{dy}{dz}\right)^2}$$

Has to be solved numerically for non-uniform magnetic field

Sep 10, 2015

- Charged particle trajectories (tracks) traveling in magnetic field are helicoidal, but:
- Non-uniform magnetic field
- To measure it, you need to interact with it!
- Active + Passive material from detectors

- Charged particle trajectories (tracks) traveling in magnetic field are helicoidal, but:
- Non-uniform magnetic field
- To measure it, you need to interact with it!
- Active + Passive material from detectors
- Hundreds to Thousands particles per event

- Charged particle trajectories (tracks) traveling in magnetic field are helicoidal, but:
- Non-uniform magnetic field
- To measure it, you need to interact with it!
- Active + Passive material from detectors
- Hundreds to Thousands particles per event
- Tight CPU timing constraints (~1kHz of event rate to disk!)

RAW-> ESD Reconstruction time @ 14 TeV

- Charged particle trajectories (tracks) traveling in magnetic field are helicoidal, but:
- Non-uniform
- To measure i to interact wi
- Active + Pas from detectors

The solution of the track reconstruction problem is challenging!

- Hundreds to Thousands particles per event
- Tight CPU timing constraints (~1kHz of event rate to disk!)

Can you find the 50 GeV track?

cf Aaron Dominguez

3rd April 2014

Can you find the 50 GeV track?

cf Aaron Dominguez

3rd April 2014

Inner Tracking Detector (ID)

- Reconstruct charged particles trajectories before calorimeter
- Coverage |η| < 2.5 (|θ| > 0.16 = 9.4°)

Inner Tracking Detector (ID)

Pixel detector

80M silicon pixels, 50x400μm² (90%) 3 barrels and 2x3 end-caps Charge measurement Pix+IBL: <hits/track> ~ 4

Semiconductor Tracker

6.3M silicon strips, 80μm pitch
4 barrels and 2x9 end-caps
Axial/Stereo layers
~binary read-out (hit/no-hit)
<hits/track> ~ 8 (4 3D points)

Transition radiation tracker

350K straws, 4mm. 73 barrel and 160 end-cap planes Provides 2D measurements <hits/track>~30 Particle ID w/ transition radiation

- Extend seed following most likely paths → early rejection of unlikely track candidates
 - Multiple paths if plausible, very efficient for nearby particles
- Typically 20k seeds → 2k Track candidates → 1k Tracks

S. Pagan Griso, LBNL

0

-1

0

2

6

8

4

u

 Run ony in region of interest in Run-2

 $\frac{x}{-u} + \frac{x^2 + y^2}{-u}$

2v

3rd April 2014

S. Pagan Griso, LBNL

ATLAS Tracking setup

- Setup very modular and adapted to running conditions
- Reconstruct tracks with $p_T > 400 \text{ MeV}$, $|d_0| < \sim 20 \text{ mm}$ (CPU req.)
- Significant updates during last years (Long Shutdown 1)
- incorporate new IBL
- re-optimize for expected pile-up conditions
- Capitalize on Run-1 experience
- Reduce CPU timing
- Start-up in 2015 (Run-2): validate on data!

Minimum-bias analysis

- Unfold charged particle distributions, rely on tracking efficiency (and its uncertainties) as main ingredient to the analysis
 - Mostly pions produced from pp collisions (then Kaons, ...)
- "Special" tracking setup $\rightarrow p_{T} > 100 \text{ MeV}$
- First results at 13 TeV already (among first results for Run-2!)

3rd April 2014

Tracking efficiency

u=1; Default

μ=1; Robust

μ=21; Robust

μ=41; Default

u=41; Robust

••••• μ=21; Default

ATLAS Preliminary

Simulation

√s=7 TeV

0.8

0.6

0.5

0.4

0.3 0.2

0.1

- Reconstruction efficiency and rate of Fractior 0.9 duplicate/fake tracks estimated from MC Von-primary
 - Hadronic interactions: main cause of tracking inefficiency
 - For muons: efficiency ~99.5%
 - Precise knowledge of

ID Material

- We've built the detector, therefore we know what it is made of....
- Kind of.. check with data itself!
- Radiography of Inner Detector using various techniques

ATLAS	estimated from measurements	simulation	
Pixel package	201 kg	197 kg	
SCT detector	672 ±15 kg	672 kg	
TRT detector	2961 ±14 kg	2962 kg	

Several Complimentary Tracking Studies

ID Material

3rd April 2014

S. Pagan Griso, LBNL

Track parameters resolution

0.0

0.05

0.04

0.03

0.02

0.01

σ(m_{µµ}) /

ATLAS

\s=8 TeV

L = 20.3 fb⁻¹

|n|<1

• 7

O Y

v J/ψ

$$(d_0, z_0, \theta, \phi, q/p)$$

- Momentum resolution from known resonances (K_s $\rightarrow \pi\pi$, J/ Ψ or Y or Z $\rightarrow \mu\mu$)
- Impact parameter resolution from prompt tracks originating from the same interaction

- Ultimate alignment is track-based
- χ² minimization of measurements-track residuals

• Iterative procedure starting from rigid-bodies down to module-level

Alignable Structures							
	IBL	Pixel	SCT	TRT			
L11	1	1	3	3			
L2(27)	1(14)	9	22	96			
L3	280	1744	4088	~350k			

Tracking in dense environments

Double track resolution

One track is reconstructed. **Recovering** the other will come at the cost of fakes

unless we can devise a

clever solution

- Loss of tracking efficiency near core of high- p_{τ} jets or taus
- Artificial NN to identify pixel measurements compatible with more than one particle
 - Based on charge, shape (>1 pixel hit)
- Recently improved using track candidate information
 - Use "global" information to discriminate good/fake nearby tracks
 - Interestingly, now efficiency limited by shared measurements in SCT!

S. Pagan Griso, LBNL

Special setups

- Some Exotic/SUSY searches use special setups to find nonstandard signatures, for instance:
 - Displaced Vertices from long-lived particles decaying far from interaction region: recover large d₀ tracks, reconstruct vertices
 - Heavily ionizing particles \rightarrow large dE/dx as measured in Pixel system

3rd April 2014

S. Pagan Griso, LBNL

Primary Vertex reconstruction

- Find the number and position of primary p-p collisions
 - Determine position of interaction region
 - Use as reference point for life-time of non-prompt particles $(b,\tau,K_s,..)$

Vertex reconstruction performance

- Typical resolution: 10-40μm (x), 30-50μm (z)
- Reconstruction efficiency of generic p-p collision ~ 70%
 - > 99% if two tracks within acceptance
- Merging of nearby interactions limits efficiency at large number of interactions

Interaction region (~Gaussian): Transverse size (σ_x): 12-16µm, 8-15µm, Run2 Longitudinal size (σ_z): 45-50 mm

Number of Tracks

S. Pagan Griso, LBNL

CPU Timing

- Tracking is a combinatorial problem → large increase of CPU timing with increase of the number of particles (interactions)
- Large effort during past three years to improve performance
- Driven by increased output trigger rate ~300-400Hz \rightarrow 1kHz, expected increase of pile-up and available processing power
- Improve software technology
- Seeding strategy tuning
 - Purity of seed changes with pile-up conditions
 - Guarantees flat efficiency, no fake increase and improves cpu
 - Promote seeds with 4th-point

	seeding	efficiency	CPU*	0 [⊨]
	"Run-I"	94.0%	9.5 sec	* = on local
	"Run-2"	94.2%	4.7 sec	machine
rc	April 2014		S	. Pagan Griso, LBNL

A look into the future

- High-Luminosity LHC (> 2023) will see
 - Even more extreme conditions: L~5x10³⁴, μ~140
 - New Inner Detector, all silicon-based (pixels + strips)
- How to reconstruct HL-LHC events?
- Processor technologies are changing
 - Beyond event-level parallelism
 - Current tracking heavily sequential, Need to exploit new ideas!

Layout studies

solenoid

Blue: strip Red: pixel

3.0

3.5

2.5

ATLAS ITk reference layout in r-z view

1.5

z (m)

2.0

- Baseline layout for initial studies
- Alternative layouts being developed
 - Extension of tracking beyond current coverage, up to |η| < 4?
- Current tracking algorithms work reasonably, but need re-design for achieving best performance

1.5

1.0

0.5

0.0

0.0

0.5

1.0

r (m)

Vertexing at HL-LHC

3rd April 2014

S. Pagan Griso, LBNL

- Track reconstruction in hadron colliders is a challenging problem
- ATLAS has developed a very modular setup to cope with very different conditions
- We never stop learning.. developments are still ongoing and new ideas will be essential for addressing at the best future challenges!

BACKUP

Electron reconstruction: a special case

- Electrons require special handling
- Bremsstrahlung significantly alters their trajectory
 - Pion-hypothesis fit fails
 - Momentum estimation biased
- Dedicated treatment
 - seeded by EM clusters
 - allow up to 30% energy loss at each material surface
 - energy loss parametrize as multiple Gaussians component

 η_{Cluster}

Pile-up mitigation (e.g. in jets)

3rd April 2014

S. Pagan Griso, LBNL

46

Tracking "fake" rate

Muon reconstruction efficiency

TIDE

49