

Search for leptophilic Dark Matter and modulation rate in XENON100

J. Masbou, on behalf of the XENON Collaboration

Our goal

Discover Dark Matter with the most sensitive liquid xenon imaging detector located in LNGS

Location of the XENON experiment & Collaboration

21 Institutes ~150 members

The XENON Dark Matter Program

 XENON10

 Achieved (2007)

 σ_{si} = 8.8 · 10⁻⁴⁴ cm² @ 100 GeV/c²

 Phys.Rev.Lett. 100 (2008) 021303

Light DM: σ_{si} = 7 · 10⁻⁴² cm² @ 7 GeV/c² *Phys.Rev.Lett.* 107 (2011) 051301

In operation since 2009

 $\frac{\text{XENON1T}}{\text{Projected (2017)}}$ $\sigma_{\text{SI}} = \sim 2.10^{-47} \text{ cm}^2$

Science data by spring 2016

Upgrade : XENONnT $\sigma_{SI} = \sim 2.10^{-48} \text{ cm}^2$

Where is the field of Direct Detection Today?

Two phase XENON TPC principle

E. Aprile et al. (XENON100), Astropart. Phys. 35, 573-590 (2012)

Xenon100 : Past Achievements

225 live days x 34 kg exposure

Profile likelihood analysis allows to set limits in the $(m\chi\,,\sigma)$ parameter space

Phys. Rev. Let. 109, 181301 (2012)

Spin-independent interaction

Spin-dependent interaction

225 live days x 34 kg exposure

- First axion results from the XENON100 experiment analyzing ER data
- Probing axion-electron coupling constant by exploiting the axioelectric effect in LXe

Annual modulation and DAMA/LIBRA

DAMA/LIBRA:

9.3 sigma significance only forsingle hit Phase (144 +- 7) daysNo signal above 6 keV

Seems to be a convincing evidence, HOWEVER... Dark matter (DM) signal rate is expected to be annually modulating

peak phase 152 days (June 1)

A key feature to distinguish signals from overwhelming backgrounds

Bernabei et al., Eur. Phys. J. C 73, 12 (2013)

Nuclear recoil interpretations of DAMA/LIBRA modulation have been challenged by several more sensitive experiments with background rejection power

Exclusion of leptophilic Dark Matter

- DAMA/LIBRA experiment observes annual modulation interpretable with leptophilic DM
- Selection of 70 live days of electronic recoil XENON100 data, where DAMA signal is highest
- Assume some model of WIMP coupling to e⁻ to estimate expected signal in XENON100
- XENON100 steady background level lower than DAMA modulation signal
- Exclusion of several types of DM models as the cause of the annual modulation

Kinematically mixed Mirror DM: **ExclusionLuminous DM:** 4.6σ Exclusion 4.4σ Exclusion Axial-vector coupling:

Science 349, 851 (2015)

 3.6σ

Julien Masbou, GDR Terascale, November 2015

- The first LXe TPC with more than one year of stable running conditions
- The first modulation search for DM at Gran Sasso Lab after DAMA/LIBRA
- Demonstration for future XENON modulation searches Search for leptophilic DM signals
- Require good understand the stability of detector and backgrounds

Stability of the Detector

Aprile *et al.*, Astropart. Phys., 35, 573-590 (2012)

- * Detector pressor
- * Room pressor
- * LXe temperature
- PTR temperature
- Room temperature
- * Purification flow rate
- * LXe levels
- * PMT gain
- * Radon level

Very tiny absolute variations No correlations with ER rate

No significant impact on ER rate!

Stability of Cut Acceptance

- Stability of cut acceptance is derived from weekly ER calibrations sources
- The acceptance variation further accounts for the variation of the detector parameters like LXe level.
- The dips of acceptance are due to increment of noise level.
- The fluctuation of acceptance is taken into account for the event rate modulation analysis.

PRL 115, 091302 (2015)

Stability of Backgrounds

- Co60 ($T_{1/2}$ = 5.3 year) gamma background is time dependent, but the absolute contribution is negligible.
- Radon and krypton background concentration are time dependent due to tiny air leak
- Radon contributes to the overall background by less than 20%. Hence the absolute contribution to fluctuation is negligible.
- No correlation between radon and ER rate.
- Krypton concentration varies in time due to air leak. The size of its variation is taken into account.

Discovery Potential

Modulation Search Results

- No evident peak crossing the 1-sigma global significance threshold!
- SS in the Low-E (2.0-5.8 keV) range shows increasing significance at long period region. 2.8-sigma local significance at one year period
- MS background only control sample in Low-E range shows similar power spectrum as SS. This disfavors an WIMPs interpretation of the SS spectrum
- SS in high-E (5.8-10.4 keV) does not show high significance at long period region

PRL 115, 091302 (2015)

DAMA/LIBRA Comparison (2D)

- The phase (112+-15) days (April 22) is not consistent with the standard halo model (June 2) at 2.6-sigma
- The amplitude of is also too small (only~25%) compared with the expected DAMA/LIBRA modulation signal in XENON100.
- The DM interpretation of DAMA/ LIBRA annual modulation as being due to WIMPs electron scattering through axial vector coupling is disfavored at 4.8-sigma from a PL analysis

PRL 115, 091302 (2015)

XENON1T Systems T-SK-I P Cryogen urification 时 Electronics and DAC LXe Detector 財 eSteX and Kr-Colum **Muon Veto Detector**

XENON1T : Expected Background and Sensitivity

Julien Masbou, GDR Terascale, November 2015