Bound states in dark-matter physics

Kallia Petraki

Université Pierre et Marie Curie, LPTHE, Paris

GDR, Grenoble 2015

Long-range interactions mediated by a light or massless particle

Bound states

Long-range interactions

Motivation

Iconoclastic-ism:

Most DM research has focused on contact interactions. Prototypical WIMP scenario: $m_{DM} \sim m_{mediators} \sim 100$ GeV. What happens when $m_{DM} >> m_{mediators}$?

- Long-range interactions appear in a variety of DM theories:
 - Self-interacting DM
 - Asymmetric DM
 - Dissipative DM
 - DM explanations of galactic positrons
 - DM explanations of IceCube PeV neutrinos
 - WIMP DM with m_{DM} > few TeV! [Hisano et al. 2002]

Minimal DM [Cirelli et al.]
LHC implications for SUSY
Direct/Indirect detection bounds

Hidden sector DM

Long-range interactions

Complications

Large logarithmic corrections:

```
\delta \sigma \sim \ln (m_{DM} / m_{mediator}), \ln \ln (m_{DM} / m_{mediator})
```

→ resummation techniques etc.

[Baumgart et al. (2014)]

- Non-perturbative effects:
 - Sommerfeld enhancement in the non-relativistic regime. Usually invoked for DM annihilation into radiation, but in fact affects *all* processes with same initial state.
- More processes:

Radiative formation of bound states [Sommerfeld enhanced]

Phenomenological implications

- Asymmetric DM → stable bound states
 - Kinetic decoupling of DM from radiation, in the early universe
 - DM self-scattering in haloes (screening)
 - Indirect detection signals (radiative level transitions)
 - Direct detection signals (screening, inelastic scattering)
- Symmetric DM → unstable bound states formation + decay = extra annihilation channel
 - Relic abundance [von Harling, KP (2014); Ellis et al. (2015)]
 - Indirect detection

Processes

[von Harling, KP (2014)]

Toy model: Dirac fermions (X, \overline{X}) of mass m, coupled to a massless dark photon γ , with dark fine-structure constant α .

Very important parameter: $\zeta = \alpha / v_{rel}$

Annihilation $X + \bar{X} \rightarrow \gamma + \gamma$

$$\sigma_{ann} V_{rel} = \sigma_0 S_{ann}(\zeta)$$

$$\sigma_0 = \pi \alpha^2 / m^2$$

$$S_{ann}(\zeta) = \frac{2\pi\zeta}{1-e^{-2\pi\zeta}}$$

$$S_{ann}(\zeta \ll 1) \simeq 1$$

$$S_{ann}(\zeta \gtrsim 1) \simeq 2\pi \zeta$$

Bound state formation and decay

$$(X + \overline{X}) \rightarrow (X \overline{X})_{bound} + \gamma$$

 $(X \overline{X})_{bound} \rightarrow 2 \gamma \text{ or } 3 \gamma$

$$\sigma_{BSF} V_{rel} = \sigma_0 S_{BSF}(\zeta)$$

$$\sigma_0 = \pi \alpha^2 / m^2$$

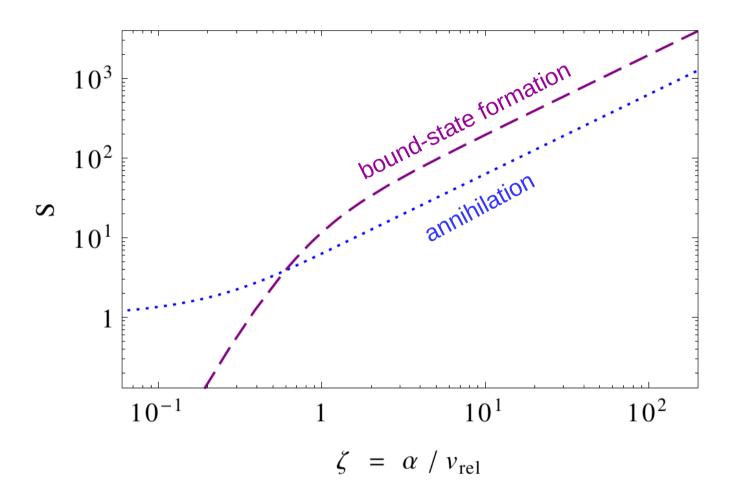
$$S_{BSF}(\zeta) = \left[\frac{2^9}{3e^{4 \xi \operatorname{arccot}(\zeta)}} \frac{\zeta^4}{(1+\zeta^2)^2} \right] \frac{2\pi \zeta}{1-e^{-2\pi \zeta}}$$

$$S_{BSF}(\zeta \ll 1) \simeq \frac{2^9 \zeta^4}{3} \ll 1$$

$$S_{BSF}(\zeta \ll 1) \simeq \frac{2^9 \zeta^4}{3} \ll 1$$

$$S_{BSF}(\zeta \gtrsim 1) \simeq \frac{2^9}{3 e^4} \times 2 \pi \zeta \simeq 3.13 \times S_{ann}$$

[von Harling, KP (2014)]



BSF dominates over annihilation everywhere the Sommerfeld effect is important ($\zeta > 1$)!

[von Harling, KP (2014)]

Boltzmann equations

$$\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -(n_{\chi}^{2} - n_{\chi}^{eq}) \langle \sigma_{ann} v_{rel} \rangle - n_{\chi}^{2} \langle \sigma_{BSF} v_{rel} \rangle + (n_{\uparrow\downarrow} + n_{\uparrow\uparrow}) \Gamma_{ion}$$

$$\frac{dn_{\uparrow\downarrow}}{dt} + 3Hn_{\uparrow\downarrow} = + \frac{1}{4} n_{\chi}^{2} \langle \sigma_{BSF} v_{rel} \rangle - n_{\uparrow\downarrow} (\Gamma_{ion} + \Gamma_{decay,\uparrow\downarrow})$$

$$\frac{dn_{\uparrow\uparrow}}{dt} + 3Hn_{\uparrow\uparrow} = + \frac{3}{4} n_{\chi}^{2} \langle \sigma_{BSF} v_{rel} \rangle - n_{\uparrow\uparrow} (\Gamma_{ion} + \Gamma_{decay,\uparrow\uparrow})$$

$$(X \overline{X})_{\uparrow \downarrow} \rightarrow 2 \gamma: \qquad \Gamma_{decay, \uparrow \downarrow} = \alpha^{5}(m/2)$$

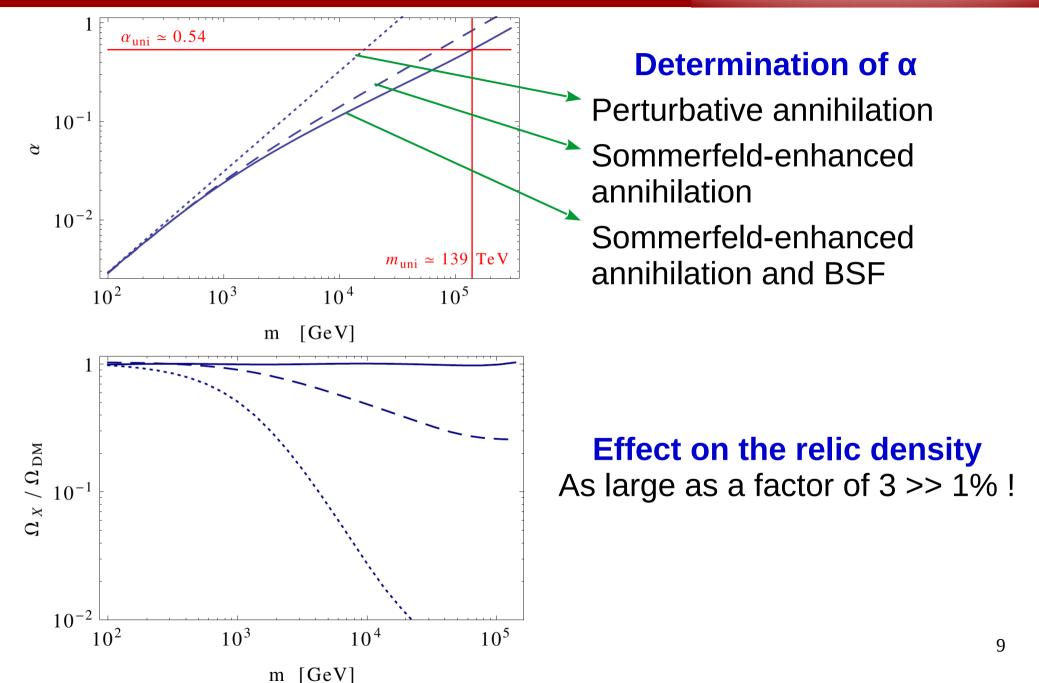
$$(X \overline{X})_{\uparrow \uparrow} \rightarrow 3 \gamma: \qquad \Gamma_{decay, \uparrow \uparrow} = \frac{4(\pi^{2} - 9)}{9 \pi} \alpha^{6}(m/2)$$

$$\alpha^{6}(m/2)$$

$$(X \overline{X})_{\uparrow \downarrow \text{ or } \uparrow \uparrow} + \gamma \rightarrow X + \overline{X}: \quad \Gamma_{ion}(T) = \frac{2}{(2\pi)^3} 4\pi \int_0^\infty d\omega \frac{\omega^2}{e^{\omega/T} - 1} \underbrace{\sigma_{ion}(\omega)}_{\text{related to } \sigma_{\text{BSF}}}$$

Results

[von Harling, KP (2014)]



Long-range interactions

(Partial-wave) Unitarity

$$\sigma_{inel,J} \ v_{rel} \le \frac{(2J+1)4\pi}{m^2 \ v_{rel}}$$
 feature of long-range inelastic processes

• Implies upper limit on mass of thermal relic DM.

[Griest, Kamionkowski (1990)]

- Can be realised only if DM possesses long-range interactions: [von Harling, KP (2014)] At $\alpha >> v_{rel}$: $\sigma_{ann} v_{rel}$ and $\sigma_{BSF} v_{rel} \sim \# \alpha^3 / (m^2 v_{rel})$. Unitarity realised (perturbatively) for $\alpha \sim 0.5$, i.e. well below the perturbativity limit ($\alpha \sim \pi$ or 4π). Non-self-conjugate DM: $m_{UNI} < 83$ TeV \rightarrow 139 TeV for **s-wave** processes.
- Close to the unitarity limit, all partial waves must have the same v-dependence. Confirmed by explicit calculations for long-range interactions. [Cassel (2009)] For annihilation, higher $J \rightarrow$ higher powers of α .
- For BSF, higher partial waves give significant or dominant contribution, Wiechers e.g. BSF with vector boson emission: $\mathcal{M} \sim \sin \theta \rightarrow J=0$: 62%, J=2: 24% ... (2015)] \rightarrow Unitarity limit on m_{DM} even higher?

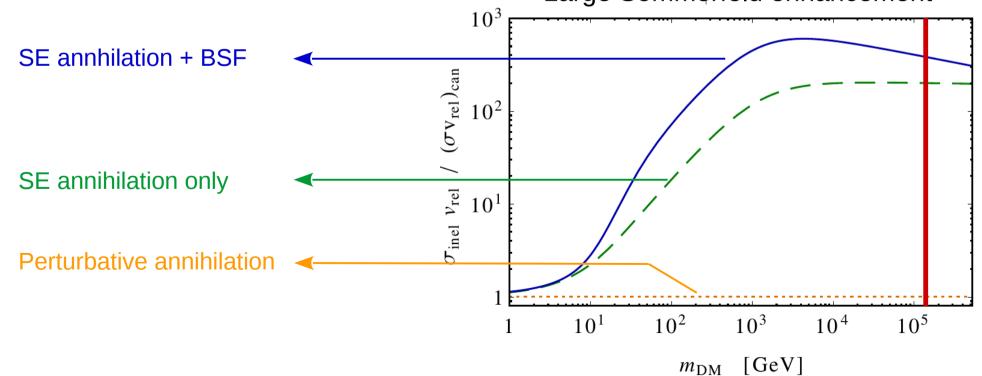
Indirect detection of symmetric DM

BSF implies:

- Enhanced signal rate, $\sigma_{BSF} > \sigma_{ann}$.
- Features in the spectrum:

$$X + \overline{X} \rightarrow (X\overline{X})_{bound} + \gamma [= \alpha^2 m_{DM}/4]$$
 $(X\overline{X})_{bound, \uparrow\downarrow} \rightarrow 2\gamma [= 2 \times m_{DM}]$
 $(X\overline{X})_{bound, \uparrow\uparrow} \rightarrow 3\gamma [= 3 \times (2/3)m_{DM}]$

Milky Way: $v_{rel} \sim 10^{-3}$. Large Sommerfeld enhancement



Generalisations needed

- Massive mediator Yukawa potential
- Different interactions (e.g. scalar mediator)
- Non-confining non-Abelian theories,
 e.g. electroweak interactions

Reform and calculate

[KP, Postma, Wiechers (2015)]

Develop QFT formalism instead of QM, even though we care about the non-relativistic and weak-coupling regime:

- Can accommodate non-Abelian interactions.
- Allows systematic inclusion of higher-order corrections in the coupling strength and in the momentum transfer (particularly important when leading order terms cancel).

Radiative capture, in QFT

[KP, Postma, Wiechers (2015)]

$$\chi_1 + \chi_2 \rightarrow \mathcal{B} + \phi$$

- Why radiative?
 - Need to get rid of the kinetic + binding energies. (Similar to internal bremsstrahlung, where kinetic energy only is radiated.)
- How do we describe the incoming (scattering) state?
 Long-range interaction → Two-particle state (branch cut) ≠ Two plane waves,
 → Sommerfeld effect (in the non-relativistic regime)
- How do we describe the bound state? One-particle state (pole in scattering amplitude), with the quantum charges of χ_1 & χ_2 .

Bethe & Salpeter 1957

How does the radiative vertex get into the picture?
 Perturbative part of the amplitude.

Feynman diagrams

How do we put everything together to calculate the amplitude?

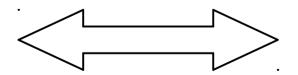
LSZ reduction

Radiative capture, in QFT

[KP, Postma, Wiechers (2015)]



5-point function



BSF amplitude

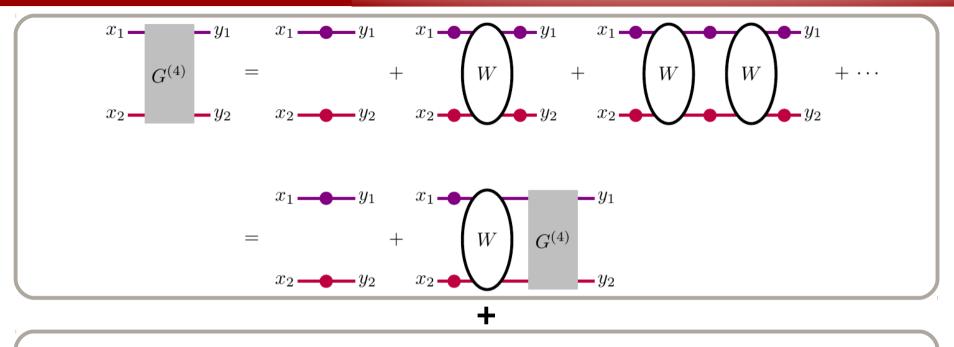
branch-cut & pole structure

The 4-point function: **Decomposition**

$$G^{(4)} = \langle \Omega | T \chi_1(x_1) \chi_2(x_2) \chi_1^\dagger(y_1) \chi_2^\dagger(y_2) | \Omega \rangle$$
 1 $\sim \sum_n \int d^3Q \, |\mathcal{B}_{\mathrm{Q},n} \rangle \langle \mathcal{B}_{\mathrm{Q},n}| + \int d^3q \, d^3Q \, |\mathcal{U}_{\mathrm{Q,q}} \rangle \langle \mathcal{U}_{\mathrm{Q,q}}| \, \mathrm{scattering} \, \mathrm{states}$ of relative momentum

$$G^{(4)}(Q) \sim \sum_n rac{i\Psi_{\mathrm{Q},n}\Psi_{\mathrm{Q},n}^*}{Q^0-\omega_{\mathrm{Q},n}+i\epsilon} + \int d^3q \; rac{i\Phi_{\mathrm{Q},q}\Phi_{\mathrm{Q},q}^*}{Q^0-\omega_{\mathrm{Q},q}+i\epsilon}$$
 where $egin{cases} \Psi_{\mathrm{Q},n}(x_1,x_2) \equiv \langle \Omega|T\chi_1(x_1)\chi_2(x_2)|\mathcal{B}_{\mathrm{Q},n}
angle \ \Phi_{\mathrm{Q},q}(x_1,x_2) \equiv \langle \Omega|T\chi_1(x_1)\chi_2(x_2)|\mathcal{U}_{\mathrm{Q},q}
angle \end{cases}$ Bethe-Salpeter wavefunctions

The 4-point function: **Dyson-Schwinger equation**



G⁽⁴⁾ decomposition into bound & scattering-state contributions

Bethe – Salpeter equations for bound & scattering state WFs

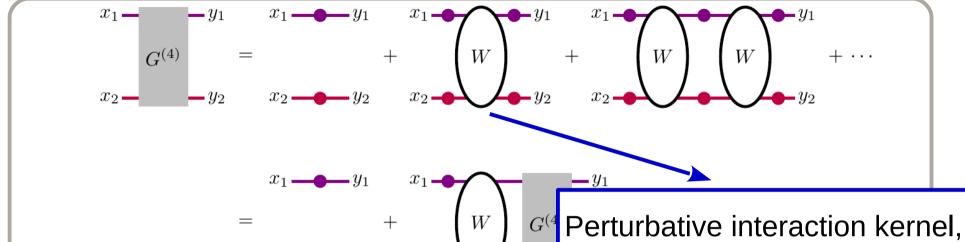
Sommerfeld effect!

$$\tilde{\Psi}_{\mathbf{Q},n}(p) = S(p;Q) \int \frac{d^4k}{(2\pi)^4} \ \tilde{W}(p,k;Q) \ \tilde{\Psi}_{\mathbf{Q},n}(k)$$

$$\tilde{\Phi}_{\mathbf{Q},\mathbf{q}}(p) = S(p;Q) \int \frac{d^4k}{(2\pi)^4} \ \tilde{W}(p,k;Q) \ \tilde{\Phi}_{\mathbf{Q},\mathbf{q}}(k)$$
 in non-relativistic regime

Reduce to Schrodinger eq regime

The 4-point function: **Dyson-Schwinger equation**



G⁽⁴⁾ decomposition into bound & scat

Perturbative interaction kernel e.g. one-boson exchange

Bethe – Salpeter equations for bound & scattering state WFs

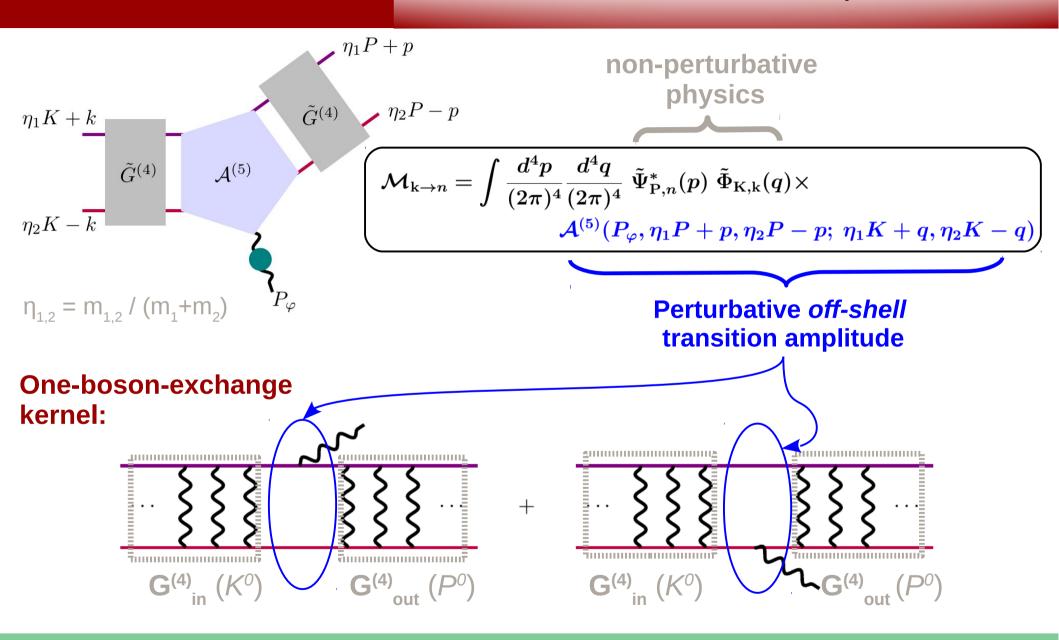
Sommerfeld effect!

$$\tilde{\Psi}_{\mathbf{Q},n}(p) = S(p;Q) \int \frac{d^4k}{(2\pi)^4} \ \tilde{W}(p,k;Q) \ \tilde{\Psi}_{\mathbf{Q},n}(k)$$

$$\tilde{\Phi}_{\mathbf{Q},\mathbf{q}}(p) = S(p;Q) \int \frac{d^4k}{(2\pi)^4} \ \tilde{W}(p,k;Q) \ \tilde{\Phi}_{\mathbf{Q},\mathbf{q}}(k)$$

Reduce to
Schrodinger eq
in non-relativistic
regime

LSZ reduction → Amplitude



Setup generalisable to multiple interacting quartetos $\chi_i + \chi_j \rightarrow \chi_k + \chi_l$ with interaction kernels W_{iikl} , described by $G^{(4)}_{iikl}$.

Conclusion

Long-range interactions imply bound states.

If they exist, they likely form!
If they form, we need to predict it.

Need tools to calculate bound-state related processes.

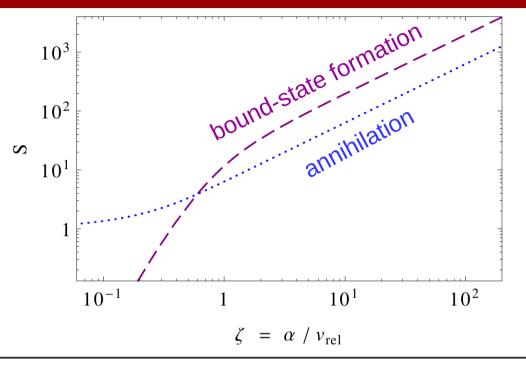
Non-relativistic regime relevant for DM phenomenology. Nevertheless, QFT formalism preferable or even necessary.

Can accommodate DM residing in multiplets, and multiple interaction kernels. Can reliably yield higher-order corrections.

extra slides

Rates

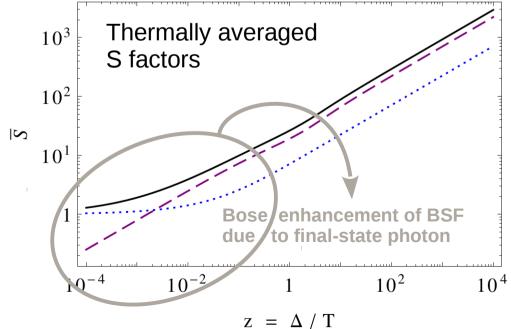
[von Harling, KP (2014)]



reduced mass $\mu = m/2$

$$\zeta \equiv \frac{Bohr\ momentum}{relative\ momentum} = \frac{\mu \alpha}{\mu v_{rel}}$$

BSF dominates over annihilation everywhere the Sommerfeld effect is important ($\zeta > 1$)!

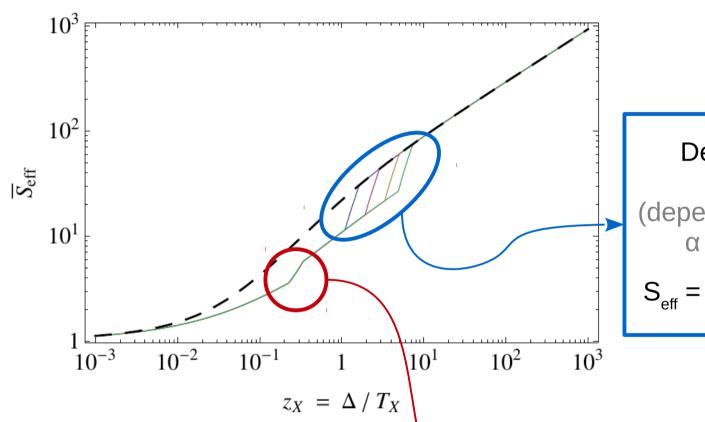


$$z = \frac{binding\ energy\ \Delta}{T} \sim \frac{(1/2)\mu\ \alpha^2}{(1/6)\mu\ \langle v_{rel}^2 \rangle} \sim 3\langle \xi^2 \rangle$$

BSF can annihilate DM at z > 1, when disassociation of bound states becomes unimportant.

[von Harling, KP (2014)]

"Effective" enhancement



Decay of $\uparrow\uparrow$ bound state faster than ionisation (depends on α ; from left to right: $\alpha = 0.5, 0.1, 0.01, 0.001$)

$$S_{eff} = S_{ann} + (1/4)S_{BSF} + (3/4)S_{BSF}$$

Decay of ↑↓ bound state faster than ionisation (independent of α)

$$S_{eff} = S_{ann} + (1/4)S_{BSF}$$

[von Harling, KP (2014)]

Timeline

 α (m) fixed from relic abundance (see results)

