CLOSING IN ON COMPRESSED GLUINO-NEUTRALINO SPECTRA AT THE LHC

Guillaume CHALONS

LPSC Grenoble

based on G. C, D. Sengupta, ArXiv: 1508.06735 [hep-ph] accepted for publication in JHEP

CHALONS Guillaume

COMPRESSED GLUINO-NEUTRALINO SPECTRA AT THE LHC

MOTIVATIONS

Gluinos (\tilde{g}) are

- SUSY partners of the gluon
- Majorana fermions
- coupled flavour-blindly only to quarks and gluinos with strength gs

- Gluinos have the largest production cross section at the LHC (if sufficiently "light")
- ▶ Maybe most sensitive (with $\tilde{q}\tilde{q}$) if 1^{st} and 2^{nd} gen. are heavy due to $M_h = 125$ GeV.

GLUINO SEARCHES

- If R-parity conserved then gluinos are pair-produced
- ▶ If $m_{\tilde{g}} \gg m_{\tilde{\chi}_1^0} \to \text{and "short-lived"}$ Cascade decays

Signatures : Jets + $\not\!\!E_T$, Jets + b-jets + $\not\!\!E_T$, Jets + b-jets + ℓ + $\not\!\!E_T$

Results intepreted in terms of

- Constrained models : MSUGRA/CMSSM, GMSB, GGM
- Simplified Models

A St	ATLAS SUSY Searches* - 95% CL Lower Limits Status: Feb 2015							ATLAS Preliminary $\sqrt{s} = 7.8 \text{ TeV}$	
	Model	e,μ,τ,γ	Jets	$E_{\rm T}^{\rm miss}$	∫£ dt[fb	Mass limit		Reference	
Inclusive Searches	$ \begin{split} & \text{MSUGRACMSSM} \\ & \tilde{\phi}\tilde{r}, \tilde{\phi} \rightarrow \phi \tilde{r}_{1}^{2} \\ & \tilde{\phi}\phi\gamma, \tilde{d} \rightarrow \phi \tilde{r}_{1}^{2} \\ & \tilde{g}\bar{r}\gamma, \tilde{d} \rightarrow \phi \tilde{r}_{1}^{2} \\ & \tilde{g}\bar{r}\gamma, \tilde{d}\gamma, \tilde{g}\bar{r}\gamma, \tilde{g}\gamma, \tilde$	$\begin{array}{c} 0 \\ 0 \\ 1 \gamma \\ 0 \\ 1 e, \mu \\ 2 e, \mu \\ 1 \cdot 2 \tau + 0 \cdot 1 \ell \\ 2 \gamma \\ 1 e, \mu + \gamma \\ \gamma \\ 2 e, \mu (Z) \\ 0 \end{array}$	2-6 jets 2-6 jets 0-1 jet 2-6 jets 3-6 jets 0-3 jets 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20 20 20.3 20.3 20.3 4.8 4.8 5.8 20.3	4.2 1.250 GeV 2.50 GeV 4.51 TeV 4 2250 GeV 2.50 GeV 4.51 TeV 5 1.51 TeV 5 1	$\begin{split} & \pi(\tilde{t}) = O(\Phi, t) ~ (t^* gen, \tilde{s}) = \pi(t_1^{2-4} gen, \tilde{s}) \\ & \pi(\tilde{t}^2) = O(\Phi, t) ~ (t^* gen, \tilde{s}) = \pi(t_1^{2-4} gen, \tilde{s}) \\ & \pi(\tilde{t}^2) = O(\Phi, t) \\ & \pi(\tilde{t}^2) = $	1405.7875 1405.7875 1411.1599 1405.7875 1501.03555 1501.03555 1501.03555 1501.03555 1407.0603 ATLAS-CONF-2014.001 ATLAS-CONF-2014.001 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 1502.01518	
3 rd gen. § med.	$\tilde{s} \rightarrow b \tilde{b} \tilde{k}_1^0$ $\tilde{s} \rightarrow t \tilde{k}_1^0$ $\tilde{s} \rightarrow t \tilde{k}_1^0$ $\tilde{s} \rightarrow b \tilde{s} \tilde{k}_1^+$	0 0 0-1 e,µ 0-1 e,µ	3 b 7-10 jets 3 b 3 b	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	2 1.25 TeV 2 1.1 TeV 2 1.3 TeV 2 1.3 TeV 2 1.3 TeV	m(\tilde{k}_1^0)<400 GeV m(\tilde{k}_1^0)<350 GeV m(\tilde{k}_1^0)<400 GeV m(\tilde{k}_1^0)<400 GeV	1407.0600 1308.1841 1407.0600 1407.0600	

Summary of CMS SUSY Results* in SMS framework

WHERE IS SUSY HIDDEN ?

CHALONS Guillaume

COMPRESSED GLUINO-NEUTRALINO SPECTRA AT THE LHC

4/14

WHERE IS SUSY HIDDEN ?

RADIATIVE GLUINO DECAY

RADIATIVE GLUINO DECAY

If $1^{
m st.}$ and $2^{
m nd.}$ generation squarks are decoupled $m_{ ilde{q}} \gg m_{ ilde{g}}$

- SMS Exp. limits on $m_{\tilde{g}}$ use $\tilde{g} \rightarrow t \bar{t} \tilde{\chi}_1^0, b \bar{b} \tilde{\chi}_1^0, t \bar{b} \tilde{\chi}_1^{\pm}$
- Loss of sensitivity when threshold is closed
- ${\hspace{0.3mm}}^{\scriptstyle \hspace*{0.3mm}}$ Not (fully) considered : ${ ilde g} o g { ilde \chi}_{i}^{0}$
- Solution Would give an indication of effective SUSY breaking scale \widetilde{M}
- For $m_h \simeq 125$ GeV, non-negligible BR when $t_\beta \simeq \mathcal{O}(1)$ Sato,Shirai,Tobioka JHEP 11 (2012) 041
- Sensitive probe to compressed spectra

PHENOMENOLOGY OF $\widetilde{g} \rightarrow g + \widetilde{\chi}_1^0$

Haber, Kane (1984);Ma, Wong (1988); Sato,Shirai,Tobioka (2012);Barbieri *et al.* (1988); Baer, Tata, Woodside (1990);Gambino, Giudice, Slavich (2005); Toharia, Wells (2006)

$$\tilde{\chi}_{1}^{0} = N_{11}\widetilde{B} + N_{12}\widetilde{W}^{0} + N_{13}\widetilde{H}_{d} + N_{14}\widetilde{H}_{u}$$

• Branching fraction into a wino \widetilde{W}^0 is induced by dim 7. operator

$$\mathcal{L}_{ ext{eff.}} \simeq rac{m_{\widetilde{W}}}{m_{\widetilde{q_L}}^4} (H^\dagger au^a H) \widetilde{W}^a \sigma^{\mu
u} \widetilde{g} \, \mathcal{G}_{\mu
u} \Longrightarrow ext{ suppressed}$$

For \widetilde{B} and \widetilde{H} loop dominated by stops/tops,

$$\begin{split} \Gamma(\tilde{g} \to g\tilde{B}) &\simeq \quad \frac{g'^2 g_s^4}{32786\pi^5} \frac{(m_{\tilde{g}}^2 - m_{\tilde{B}}^2)^3}{m_{\tilde{g}}^3} \left(\sum_q \frac{Y_{q_L}}{m_{\tilde{q}_L}^2} - \frac{Y_{q_R}}{m_{\tilde{q}_R}^2} \right)^2 (m_{\tilde{g}} - m_{\tilde{B}})^2, \\ \Gamma(\tilde{g} \to g\tilde{h}) &\simeq \quad \frac{\hat{y}_t^2 g_s^4}{4096\pi^5} \frac{(m_{\tilde{g}}^2 - m_{\tilde{h}}^2)^3}{m_{\tilde{g}}^3} \left[\frac{m_t}{m_{\tilde{t}_L}^2} \left(\log \frac{m_{\tilde{t}_L}^2}{m_t^2} - 1 \right) + \frac{m_t}{m_{\tilde{t}_R}^2} \left(\log \frac{m_{\tilde{t}_R}^2}{m_t^2} - 1 \right) \right]^2. \end{split}$$

PHENOMENOLOGY OF $\widetilde{g} \rightarrow g + \widetilde{\chi}_1^0$

Haber, Kane (1984);Ma, Wong (1988); Sato,Shirai,Tobioka (2012);Barbieri *et al.* (1988); Baer, Tata, Woodside (1990);Gambino, Giudice, Slavich (2005); Toharia, Wells (2006)

$$\tilde{\chi}_1^0 = \textit{N}_{11}\widetilde{\textit{B}} + \textit{N}_{12}\widetilde{\textit{W}}^0 + \textit{N}_{13}\widetilde{\textit{H}}_{\textit{d}} + \textit{N}_{14}\widetilde{\textit{H}}_{\textit{u}}$$

• Branching fraction into a wino \widetilde{W}^0 is induced by dim 7. operator

$$\mathcal{L}_{ ext{eff.}} \simeq rac{m_{\widetilde{W}}}{m_{\widetilde{q}_L}^4} (H^\dagger au^a H) \widetilde{W}^a \sigma^{\mu
u} \widetilde{g} \, \mathcal{G}_{\mu
u} \Longrightarrow ext{ suppressed}$$

For \widetilde{B} and \widetilde{H} loop dominated by stops/tops,

$$\begin{split} \Gamma(\tilde{g} \to g\tilde{B}) &\simeq \quad \frac{g'^2 g_s^4}{32786\pi^5} \frac{(m_{\tilde{g}}^2 - m_{\tilde{B}}^2)^3}{m_{\tilde{g}}^3} \left(\sum_q \frac{Y_{q_L}}{m_{\tilde{q}_L}^2} - \frac{Y_{q_R}}{m_{\tilde{q}_R}^2} \right)^2 (m_{\tilde{g}} - m_{\tilde{B}})^2, \\ \Gamma(\tilde{g} \to g\tilde{h}) &\simeq \quad \frac{\hat{y}_t^2 g_s^4}{4096\pi^5} \frac{(m_{\tilde{g}}^2 - m_{\tilde{h}}^2)^3}{m_{\tilde{g}}^3} \left[\frac{m_t}{m_{\tilde{t}_L}^2} \left(\log \frac{m_{\tilde{t}_L}^2}{m_t^2} - 1 \right) + \frac{m_t}{m_{\tilde{t}_R}^2} \left(\log \frac{m_{\tilde{t}_R}^2}{m_t^2} - 1 \right) \right]^2 \right]. \end{split}$$

$$\begin{split} \mathsf{\Gamma}(\tilde{g} \to g\tilde{h}) \text{ has an enhancement factor } m_t^2/m_{\tilde{g}}^2(\ln(m_t^2/m_t^2))^2 \\ \mathsf{\Gamma}(\tilde{g} \to g\tilde{B}) \text{ damps as } m_{\tilde{q}}^{-4}. \end{split}$$

COMPETITION WITH 3-BODY DECAY $\widetilde{g} ightarrow q ar{q} \widetilde{\chi}_1^0$

The most important 3-body decay is $\widetilde{g} \to q \overline{q} \widetilde{B}$ mediated by a \widetilde{q}_R

In the massless quark limit we have

$$\Gamma(\tilde{g} \to q\bar{q}\tilde{B}) = \frac{\alpha_s g'^2 Y_q^2}{384\pi} \frac{m_{\tilde{g}}^5}{m_{\tilde{q}}^4} \left[f\left(\frac{m_{\tilde{B}}^2}{m_{\tilde{g}}^2}\right) + 2\frac{m_{\tilde{B}}}{m_{\tilde{g}}}g\left(\frac{m_{\tilde{B}}^2}{m_{\tilde{g}}^2}\right) \right]$$

Then we have roughly in the limit $m_{\widetilde{g}} \ll \widetilde{m}$

$$R_{2/3} = \frac{\Gamma(\tilde{g} \to g\tilde{h})}{\Gamma(\tilde{g} \to q\bar{q}\tilde{B})} \propto \frac{m_t^2}{m_{\tilde{g}}^2} \left(\ln \frac{m_{\tilde{t}}^2}{m_t^2} \right)^2 \Rightarrow \text{Resum LL (Gambino,Giudice,Slavich 05)}$$

For massive quarks, in the limit $m_{\widetilde{g}} \ll \widetilde{m}$, for higgsinos,

$$R_{2/3} = \frac{24\alpha_s}{\pi} \left(\frac{\frac{\ddot{m}_b}{\ddot{m}_t}}{\tilde{m}_t}\right)^4 \left(\frac{m_t^2}{m_{\tilde{g}} m_b \tan\beta}\right)^2 \left[\frac{1}{1-x_t} + \frac{\ln x_t}{(1-x_t)^2}\right]^2$$

COMPETITION WITH 3-BODY DECAY $\widetilde{g} ightarrow q ar{q} \widetilde{\chi}_1^0$

The most important 3-body decay is $\widetilde{g} o q \overline{q} \widetilde{B}$ mediated by a \widetilde{q}_R

In the massless quark limit we have

$$\Gamma(\tilde{g} \to q\bar{q}\tilde{B}) = \frac{\alpha_s g'^2 Y_q^2}{384\pi} \frac{m_{\tilde{g}}^5}{m_{\tilde{q}}^4} \left[f\left(\frac{m_{\tilde{B}}^2}{m_{\tilde{g}}^2}\right) + 2\frac{m_{\tilde{B}}}{m_{\tilde{g}}}g\left(\frac{m_{\tilde{B}}^2}{m_{\tilde{g}}^2}\right) \right]$$

Then we have roughly in the limit $m_{\widetilde{g}} \ll \widetilde{m}$

$$R_{2/3} = \frac{\Gamma(\tilde{g} \to g\tilde{h})}{\Gamma(\tilde{g} \to q\bar{q}\tilde{B})} \propto \frac{m_t^2}{m_{\tilde{g}}^2} \left(\ln \frac{m_{\tilde{t}}^2}{m_t^2} \right)^2 \Rightarrow \text{Resum LL (Gambino,Giudice,Slavich 05)}$$

For massive quarks, in the limit $m_{\tilde{g}} \ll \tilde{m}$, for higgsinos,

$$R_{2/3} = \frac{24\alpha_s}{\pi} \left(\frac{\frac{\tilde{m}_b}{\tilde{m}_t}}{\tilde{m}_t}\right)^4 \left(\frac{m_t^2}{m_{\tilde{g}} m_b \tan\beta}\right)^2 \left[\frac{1}{1-x_t} + \frac{\ln x_t}{(1-x_t)^2}\right]^2$$

Two-body decay is favoured for relatively lighter stops and decoupled sbottoms

CHALONS Guillaume

PHENOMENOLOGICAL INVESTIGATION

We performed a parameter scan within the pMSSM using SUSY-HIT,

• Sfermion sector, sleptons and 1^{st} two \tilde{q} gen. decoupled

•
$$M_{\tilde{t}_R} = 1$$
 TeV, $M_{\tilde{Q}_2} = 2$ TeV, $A_b = 0$

• 1 TeV
$$< M_{\tilde{b}_{D}} < 2$$
 TeV

- ▶ $-2 \text{ TeV} < A_t^{-\kappa} < 2 \text{ TeV}$
- Gaugino sector
 - ▶ 400 GeV < M₁, µ < 800 GeV</p>
 - $M_2 = 2$ TeV, $M_3 = 600$ GeV, tan $\beta = 10$

Competing three-body decays

- Higgsino: $\tilde{g} \to g \widetilde{H}^0_{1,2}$ vs. $\tilde{g} \to t \bar{b} / \bar{t} b \widetilde{H}^{\pm}_1$
- Bino: $\tilde{g} \to g \widetilde{B}$ vs. $\tilde{g} \to b \overline{b} \widetilde{B}$
- Mixed-LSP: 3-body decays from both the Higgsino and Bino case contribute.

PHENOMENOLOGICAL INVESTIGATION

COMPRESSED GLUINO-NEUTRALINO SPECTRA AT THE LHC

 ${}^{\scriptscriptstyle \rm I\!S\!S}$ No existing dedicated search for the $\widetilde{g}\to g \widetilde{\chi}^0_1$ topology

- ${}^{\scriptscriptstyle \hbox{\scriptsize ISO}}$ No existing dedicated search for the $\widetilde{g} o g \widetilde{\chi}_1^0$ topology
- In principle can be reinterpreted using monojet or multijet analyses

Analyses of interest

- IN ATLAS-SUSY-2013-21, PRD 90, 052008 (2014), 0ℓ + monojets/c-jets + ∉_T
- INS-SUS-13-012, JHEP 06, 055 (2014), 0ℓ + 3-8 jets + ∉_T

- ${}^{\scriptscriptstyle \hbox{\scriptsize ISO}}$ No existing dedicated search for the $\widetilde{g} o g \widetilde{\chi}_1^0$ topology
- In principle can be reinterpreted using monojet or multijet analyses

Analyses of interest

- IN ATLAS-SUSY-2013-21, PRD 90, 052008 (2014), 0ℓ + monojets/c-jets + ∉_T
- INTERPED IN ATLAS-SUSY-2013-02, JHEP 09, 176 (2014), 0ℓ + 2-6 jets + ∉_T
- INS-SUS-13-012, JHEP 06, 055 (2014), 0ℓ + 3-8 jets + ∉_T

As non-collaboration members, we do not have access to the data and no existing simplified model search

- ${}^{\scriptscriptstyle \hbox{\scriptsize ISO}}$ No existing dedicated search for the $\widetilde{g} o g \widetilde{\chi}_1^0$ topology
- In principle can be reinterpreted using monojet or multijet analyses

Analyses of interest

- IN ATLAS-SUSY-2013-21, PRD 90, 052008 (2014), 0ℓ + monojets/c-jets + ∉_T
- INTERPED IN ATLAS-SUSY-2013-02, JHEP 09, 176 (2014), 0ℓ + 2-6 jets + ∉_T
- INS-SUS-13-012, JHEP 06, 055 (2014), 0ℓ + 3-8 jets + ∉_T

As non-collaboration members, we do not have access to the data and no existing simplified model search

RECASTING OF THE ANALYSIS MANDATORY

PERFORMED WITHIN THE MADANALYSIS 5 FRAMEWORK (see Daniele Barducci's talk)

We reimplemented the ATLAS mono- and multijet analyses and validated it against

- Official cutflows
- Official distributions
- Reproduce the official exclusion plot

To generate the signal sample

- INSERT WE used MadGraph5.0.7 + PYTHIA 6.24
- Defined a simplified topology to target

 $\mathsf{BR}(\widetilde{g} \to g + \chi) = 100\%$

GLUINO RADIATIVE DECAY EXCLUSION PLOT

- $\label{eq:static} \begin{array}{l} \hbox{$\scriptstyle \mathbf{F}} \end{array} \mbox{Existing Run I analyses can} \\ \mbox{provide sensitivity to} \\ \mbox{\widetilde{g}} \rightarrow g + \tilde{\chi}_1^0 \end{array}$
- $\begin{array}{c} \hline \ \ \, \mathbb{S} \\ \Delta m = m_{\widetilde{g}} m_{\widetilde{\chi}_1^0} \end{array}$
- Less sensitive at high m_{g̃} compared to published analyses
- Recasted analyses available on MA5 PAD
- Quantitative agreement with Arbey,Battaglia, Mahmoudi '15, ATLAS JHEP 10 (2015) 054

GLUINO RADIATIVE DECAY EXCLUSION PLOT

- $\label{eq:static} \begin{array}{l} \hbox{$\scriptstyle \mathbf{F}} \end{array} \mbox{Existing Run I analyses can} \\ \mbox{provide sensitivity to} \\ \mbox{\widetilde{g}} \rightarrow g + \tilde{\chi}_1^0 \end{array}$
- $\begin{array}{c} \hline \ \ \, \mathbb{S} \\ \Delta m = m_{\widetilde{g}} m_{\widetilde{\chi}_1^0} \end{array}$
- Less sensitive at high m_{g̃} compared to published analyses
- Recasted analyses available on MA5 PAD
- Quantitative agreement with Arbey,Battaglia, Mahmoudi '15, ATLAS JHEP 10 (2015) 054

Ideally one would like

- To fully take into account the systematics (only experimentalists can do that)
- Some searches (probably very tedious, only exp.) \mathbb{R}
- Perform a dedicated analysis at Run II

- For illustration, concentrated on a low mass gap ($\Delta M \simeq 10$) GeV
- Expect a lot of Hard ISR jets at 13 TeV from the gluino
- > Instead of monojet search, we designed a di-jet + MET (from ISR/FSR) analysis to uncover the radiative \tilde{g} decay
- Expected backgrounds:
 - reducible: QCD, tt
 t+ jets, W + jets,
 - irreducible: Z + jets, ZZ, WZ
- Signal & Bckgd generated with MG5+ 3 j + Delphes3
- $m_{\tilde{g}} \simeq 1.2 \text{ TeV}, \ m_{\tilde{\chi}_2^0} m_{\tilde{\chi}_1^0} \simeq 6 \text{ GeV},$ BR $(\tilde{g} \to g + \tilde{\chi}_{1,2}^0) \simeq 100\%$

- \blacktriangleright For illustration, concentrated on a low mass gap ($\Delta M\simeq 10)$ GeV
- Expect a lot of Hard ISR jets at 13 TeV from the gluino
- Instead of monojet search, we designed a di-jet + MET (from ISR/FSR) analysis to uncover the radiative \tilde{g} decay
- Expected backgrounds:
 - reducible: QCD, tt+ jets, W + jets,
 - irreducible: Z + jets, ZZ, WZ

- \blacktriangleright For illustration, concentrated on a low mass gap ($\Delta M\simeq 10)$ GeV
- Expect a lot of Hard ISR jets at 13 TeV from the gluino
- > Instead of monojet search, we designed a di-jet + MET (from ISR/FSR) analysis to uncover the radiative \tilde{g} decay
- Expected backgrounds:
 - reducible: QCD, $t\bar{t}$ + jets, W + jets,
 - irreducible: Z + jets, ZZ, WZ

•
$$m_{\tilde{g}} \simeq 1.2 \text{ TeV}, \ m_{\tilde{\chi}_2^0} - m_{\tilde{\chi}_1^0} \simeq 6 \text{ GeV},$$

BR $(\tilde{g} \rightarrow g + \tilde{\chi}_{1,2}^0) \simeq 100\%$

Simple Cut-based analysis: 2 hard jets

MT₂ cut

- b-jet veto to suppress $t\bar{t}$ + jets
- $p_T^{j1} > 600 \text{ GeV}, \ p_T^{j2} > 200 \text{ GeV}$
- ▶ M_{T2} > 800 GeV

- b-jet veto to suppress $t\bar{t}$ + jets
- $p_T^{j1} > 600 \text{ GeV}, \ p_T^{j2} > 200 \text{ GeV}$
- *M*_{T2} > 800 GeV
- After M_{T2} cut, only W/Z + jets remain

	P1	P2	P3
$m_{\tilde{g}}, m_{\tilde{\chi}_1^0}(\text{GeV})$	1005,999	1205,1195	1405,1395
$S/\sqrt{B}(30 \text{ fb}^{-1})$	5.3	2.0	0.7
$S/\sqrt{B}(100 \text{ fb}^{-1})$	9.7	3.7	1.27
$S/\sqrt{B}(3000 \text{ fb}^{-1})$	53	20	7

SC.

- Lepton veto to suppress weak bckgd
- b-jet veto to suppress $t\overline{t}$ + jets
- $p_T^{j1} > 600$ GeV, $p_T^{j2} > 200$ GeV
- $M_{T2} > 800 \text{ GeV}$
- After M_{T2} cut, only W/Z + jets remain

	P1	P2	P3
$m_{ ilde{g}}, m_{ ilde{\chi}_1^0}(\text{GeV})$	1005,999	1205,1195	1405,1395
$S/\sqrt{B}(30 { m ~fb}^{-1})$	5.3	2.0	0.7
$S/\sqrt{B}(100 \text{ fb}^{-1})$	9.7	3.7	1.27
$S/\sqrt{B}(3000 \text{ fb}^{-1})$	53	20	7

Expected Discovery reach :

- 1 TeV with 30 fb^{-1} luminosity
- 1.4 TeV with 3000 fb⁻¹ luminosity

If all squarks are decoupled except the stops + $(t\bar{t}, t\bar{b})$ thresholds closed $\tilde{g} \to g + \tilde{\chi}_1^0$ can dominate

The radiative gluino decay can be used as a probe of compressed spectra scenariosATLAS and CMS Run I analyses can test this scenario, maybe Run II ?

Due to the large number of radiation jets, di-jet like searches probably more sensitive to compressed spectra than monojet searches at 13 TeV.

If all squarks are decoupled except the stops + $(t\bar{t}, t\bar{b})$ thresholds closed $\tilde{g} \to g + \tilde{\chi}_1^0$ can dominate

The radiative gluino decay can be used as a probe of compressed spectra scenarios
 ATLAS and CMS Run I analyses can test this scenario, maybe Run II ?

Due to the large number of radiation jets, di-jet like searches probably more sensitive to compressed spectra than monojet searches at 13 TeV.

- This search can have an impact on gluino NLSP scenarios
- The can be realised in realistic class of $t b \tau$ Yukawa unified models (Ananthanarayan, Laazarides, Shafi 91...)
- reference Non-universal gaugino masses at $M_{
 m GUT}$ (Ellis, Enqvist, Nanopoulos, Tamvakis 85...)

BACKUP

A VALIDATED ANALYSIS: ATLAS-SUSY-2013-21

- This analysis targets direct t_1 pair production in compressed spectra scenarios
- ▶ In particular it is optimised for $\tilde{t}_1 \rightarrow c + \tilde{\chi}_1^0$ using a monojet and c-tagged search strategies

- We only implemented the monojet search since
 - ✤ It can be reinterpreted in DM or other compressed spectra scenarios
 - \bigstar We do not have access to the needed charm-tagging information

	$\tilde{t} \rightarrow c \tilde{\chi}_{1}^{0}$ (200	/125) cutflow	$\tilde{t} \rightarrow c \tilde{\chi}_1^0$ (200/195) cutflow		
cut	# events	# events	# events	# events	
	(scaled to σ and L)	(official)	(scaled to σ and L)	(official)	
Initial # of events	376047.3		376047.3		
ALL		181902.0		103191.0	

	$\tilde{t} \rightarrow c \tilde{\chi}_1^0$ (200	/125) cutflow	$\tilde{t} \rightarrow c \tilde{\chi}_1^0$ (200/195) cutflow		
cut	# events	# events	# events	# events	
	(scaled to σ and L)	(official)	(scaled to σ and L)	(official)	
Initial # of events	376047.3		376047.3		
$\not\!$	192812.8 (-48.7%)	181902.0	104577.6 (-72.2%)	103191.0	
$\not\!$	136257.1 (-29.3%)	97217.0	82619.0 (-21.0%)	64652.0 (-37.3%)	

	$\tilde{t} \rightarrow c \tilde{\chi}_{1}^{0}$ (200	/125) cutflow	$\tilde{t} \rightarrow c \tilde{\chi}_1^0$ (200/195) cutflow		
cut	# events	# events	# events	# events	
	(scaled to σ and L)	(official)	(scaled to σ and L)	(official)	
Initial # of events	376047.3		376047.3		
$\not\!$	192812.8 (-48.7%)	181902.0	104577.6 (-72.2%)	103191.0	
$\not\!$	136257.1 (-29.3%)	97217.0	82619.0 (-21.0%)	64652.0 (-37.3%)	
Trigger,	-	82131.0 (-15.5%)	-	57566.0 (-30.3%)	

	$\tilde{t} \rightarrow c \tilde{\chi}_1^0$ (200	/125) cutflow	${ ilde t} ightarrow c { ilde \chi}_1^0$ (200/195) cutflow				
cut	# events	# events	# events	# events			
	(scaled to σ and L)	(official)	(scaled to σ and L)	(official)			
Initial # of events	376047.3		376047.3				
$\not\!$	192812.8 (-48.7%)	181902.0	104577.6 (-72.2%)	103191.0			
$\not\!$	136257.1 (-29.3%)	97217.0	82619.0 (-21.0%)	64652.0 (-37.3%)			
Trigger,	-	82131.0 (-15.5%)	-	57566.0 (-30.3%)			
Lepton veto	134894.2 (-1.0%)	81855.0 (-15.8%)	82493.9 (-0.2%)	57455.0 (-11.1%)			
$N_{\rm jets} \leq 3$	101653.7 (-24.6%)	59315.0 (-27.5%)	75391.5 (-8.6%)	52491.0 (-8.6%)			
$\Delta \phi(\not\!\!\! E_T, \text{jets}) > 0.4$	95568.8 (-2.1%)	54295.0 (-8.5%)	70888.1 (-1.2%)	49216.0 (-6.2%)			
$p_T(j_1) > 150 \text{ GeV}$	17282.8 (-81.9%)	14220.0 (-73.8%)	25552.0 (-64.0%)	20910.0 (-57.5%)			
$\not\!$	10987.8 (-36.4%)	9468.0 (-33.4%)	21569.1 (-15.6%)	18297.0(-12.5%)			
M1 Signal Region							

ſ

	$\tilde{t} \rightarrow c \tilde{\chi}_1^0$ (200	/125) cutflow	${ ilde t} ightarrow c { ilde \chi}_1^0$ (200/195) cutflow				
cut	# events	# events	# events	# events			
	(scaled to σ and L)	(official)	(scaled to σ and L)	(official)			
Initial # of events	376047.3		376047.3				
$\not\!$	192812.8 (-48.7%)	181902.0	104577.6 (-72.2%)	103191.0			
$\not\!$	136257.1 (-29.3%)	97217.0	82619.0 (-21.0%)	64652.0 (-37.3%)			
Trigger,	-	82131.0 (-15.5%)	-	57566.0 (-30.3%)			
Lepton veto	134894.2 (-1.0%)	81855.0 (-15.8%)	82493.9 (-0.2%)	57455.0 (-11.1%)			
$N_{\rm jets} \leq 3$	101653.7 (-24.6%)	59315.0 (-27.5%)	75391.5 (-8.6%)	52491.0 (-8.6%)			
$\Delta \phi(\not\!\!\! E_T, \text{ jets}) > 0.4$	95568.8 (-2.1%)	54295.0 (-8.5%)	70888.1 (-1.2%)	49216.0 (-6.2%)			
$p_T(j_1) > 150 \text{ GeV}$	17282.8 (-81.9%)	14220.0 (-73.8%)	25552.0 (-64.0%)	20910.0 (-57.5%)			
$\not{\!\!\! E_T}$ > 150 GeV	10987.8 (-36.4%)	9468.0 (-33.4%)	21569.1 (-15.6%)	18297.0(-12.5%)			
		M1 Signal Region					
$p_T(j_1) > 280 \text{ GeV}$	2031.2 (-81.5%)	1627.0 (-82.8%)	4922.0 (-77.2%)	3854.0 (-78.9%)			
$\not\!$	1517.6 (-25.3%)	1276.0 (-21.6%)	4628.4 (-6.0%)	3722.0 (-3.4%)			
		M2 Signal Region					
$p_T(j_1) > 340 \text{ GeV}$	858.0 (-92.2%)	721.0 (-92.4%)	2509.0 (-88.4%)	1897.0 (-89.6%)			
$\not\!$	344.4 (-59.9%)	282.0 (-60.9%)	1758.9 (-29.9%)	1518.0 (-20.0%)			
M3 Signal Region							
$p_T(j_1) > 450 \text{ GeV}$	204.3 (-98.1%)	169.0 (-98.2%)	773.3 (-96.4%)	527.0 (-97.1%)			
$\not\!$	61.3 (-70.0%)	64.0 (-62.1%)	476.8 (-38.3%)	415.0 (-21.3%)			

ATLAS-SUSY-2013-21:DISTRIBUTIONS

REPRODUCTION OF THE EXCLUSION PLOT

To derive limits we use a lightweight exclusion code picking the most sensitive SR via

 $\mathcal{L} = \text{poiss}(n_i^{obs.} | n_i^s + n_i^b) \cdot \text{gauss}(n_i^b | n_i^{b, exp}, \Delta n_i^b)$

We aim at a precision of order 20-30% on the limit setting

COMPRESSED GLUINO-NEUTRALINO SPECTRA AT THE LHC