AMS-02 in space

physics results, overview, and challenges

Laboratoire de Physique Subatomique et de Cosmologie On behalf of the

Nicola Tomassetti LPSC/CNRS – Grenoble, France on behalf of the AMS Collaboration

> **GDR Terascale** November 23 – 25 Grenoble, France

The AMS Project

Particle physics detector for high precision CR measurements at TeV energy

Physics goals

- ✓ Antimatter search (|Z|>1 anti-nuclei)
- ✓ Dark Matter (light anti-matter & γ-rays)
- ✓ Exotic signals from SQM
- ✓ GCR astrophysics & γ-rays
- ✓ Heliophysics (long-term modulation & SEP)
- \checkmark Magnetospheric physics & space radiation studies

How it will fulfill these goals?

- Large collaboration: 16 Countries, 60 Institutes and ~500+ Physicists
- Same concept (precision & capability) as the large state-of-the-art HEP detectors [but: fitting into the space shuttle & no human intervention after installation]
- Operation in space, ISS, at 400km, no backgrounds from atmospheric interactions [extensive multi-step space qualification tests]
- Collection power: geometrical factor (≈ 0.5 m2sr) X exposure time (= ISS lifetime) [extensive calibration campaigns on ground]

The AMS Project

AMS Collaboration

→ Steadily taking data on the ISS since May 19th 2011

NICOLA TOMASSETTI - LPSC - IN2P3/CNRS GRENOBLE

1999-2011: contruction and assembly

May 19th 2011: activation!

The Payload Operation Control Center (POCC)

Since the 27th June, 2011, 5:00 am GMT, AMS-02 is controlled 24/7 from the new POCC building at CERN, Prevessin site.

Shifts are organized to monitor the AMS-02 conditions, operations, and the continuous flow of data to ground.

Since July 2012, a second control room (the asia POCC) is running at the CSIST facility in Taiwan.

>80 billion events recorded

The AMS physics program

✓ the origin and transport of cosmic rays in the Galaxy
 ✓ the particle nature of cosmological dark matter.

Search for dark matter

Dark matter and CR propagation physics

- Background from cosmic-ray sources (SNR) No anti-matter expected
 Background from p+ISM collisions on disc: from propagation models
- ✓ Signal from DM annihilation $\chi + \chi -> (...) ->$ antimatter

• Intestellar matter (ISM)

• Energy dependent CR diffusion

Dark matter and CR propagation physics

- Background from cosmic-ray sources (SNR) No anti-matter expected
- ✓ *Background* from p+ISM collisions on disc: from propagation models
- ✓ Signal from DM annihilation $\chi + \chi --> (...) -->$ antimatter

Dark matter and CR propagation physics

- Background from cosmic-ray sources (SNR) No anti-matter expected
- Background from p+ISM collisions on disc: from propagation models
- ✓ Signal from DM annihilation $\chi + \chi --> (...) -->$ antimatter

High-energy CNO + gas \rightarrow LiBeB fragments

- ✓ Primary spectra -> acceleration in SNRs
- ✓ Secondary/primary ratios -> propagation -> level of secondary antimatter
- ✓ Unstable/stable ratios, heavy nuclei, anisotropy...

The AMS-02 instrument

Multiple measurements of energy

Multiple determination of charge

Multiple lepton/hadron separation

NICOLA TOMASSETTI - LPSC - IN2P3/CNRS GRENOBLE

No redundancy for particle sign

Nuclear Interactions Studies

CR collisions off C and Al: cross section data exist only below 10 GV

New method to determine interactions from ISS data with AMS pointing in horizontal direction

Hadronic tomography with cosmic rays

MATERIAL RECONTRUCTION USING INTERACTION VERTICES RECONSTRUCTED BY TRD

Positron fraction measured between 0.5 to 350 GeV of energy

- ✓ 1.5 years of data. 74,000 events.
- ✓ 72 events in the last energy bin

- \checkmark No fine structure in the spectra.
- ✓ Persistent rise up ~ 200 GeV

The e+ secondary production is expected to decrease monotonically, while results indicate a persistent rise. The positron fraction increases steadily from 10 to 250 GeV.

2014, positron fraction at high energies

PRL 113 (2014)121101 : Positron fraction from 0.5 to 500 GeV. With 3yrs data

- New high-energy data (3 yrs statistics) released. 0.5 GeV 500 GeV
- The Positron fraction above ~200 GeV does not increase anymore

2014, lepton fluxes: e⁺, e⁻, and "all electron"

- ✓ September 2014 –positron fraction in 0.5 500 GeV
- ✓ October 2014 electron and positron fluxes up to 700 GeV
- ✓ November 2014 electron + positron total flux up to 1 TeV

Electron spectrum x E³

Above 10 GeV: smooth, slowly falling curve. Fairly good agreement with the PAMELA data. Different solar modulation at low energies.

Positron spectrum x E³

Flat spectrum from ~10 to 30 GeV. Change of slope above 30 GeV, harder than E-3, completely different from the e- spectrum.

Nuclear component

Nuclear component

New results: Proton Flux at TeV

[Phys. Rev. Lett. 114 (2015) 171103]

The spectrum cannot be described by a single power-law function. We obtain a good description using a double power-law:

$$\Phi = C \left(\frac{R}{45 \,\text{GV}}\right)^{\gamma} \left[1 + \left(\frac{R}{R_0}\right)^{\Delta \gamma/s}\right]^s$$

$\gamma = -2.849^{+0.002}_{-0.002} (fit)^{+0.004}_{-0.003} (sys)$	low-rigidity slope
$\Delta\gamma=0.133^{+0.032}_{-0.021}(fit)^{+0.046}_{-0.030}(sys)$	delta-slope
$R_0 = 336_{.44}^{+68} (fit)_{.28}^{+66} (sys) [GV]$	critical rigidity

The detailed variation of the highenergy flux can be characterized by measuring the log-slope. As shown, the proton flux experiences a progressive hardening above ~100 GV of rigidity.

New results: Helium Flux at TeV

[Phys. Rev. Lett. 115 (2015) 201101]

New results: Helium Flux at TeV

[Phys. Rev. Lett. 115 (2015) 201101]

The spectrum cannot be described by a single power-law function. We obtain a good description using a double power-law:

$$\Phi = C \left(\frac{R}{45 \,\text{GV}}\right)^{\gamma} \left[1 + \left(\frac{R}{R_0}\right)^{\Delta \gamma/s}\right]^s$$

$$\gamma = -2.780 \pm 0.005 \text{(fit)} \pm 0.001 \text{(sys)}$$
$$\Delta \gamma = 0.119^{+0.013}_{-0.010} \text{(fit)}^{+0.033}_{-0.028} \text{(sys)}$$
$$R_0 = 245^{+35}_{-31} \text{(fit)}^{+33}_{-30} \text{(sys)}$$

The detailed variation of the highenergy flux can be characterized by measuring the log-slope. As shown, the proton flux experiences a progressive hardening above ~100 GV of rigidity.

New results: p/He ratio

[Phys. Rev. Lett. 115 (2015) 201101]

Light nuclei – current status

- ✓ B/C ratio at 0.5 GeV/n − 1 TeV/n
 Standard observable for CR transport
- ✓ Lithium spectrum at 2 GV- 3 TV
 Highly sensitive to CR propagation
- ✓ Carbon spectrum at 0.5 GeV/n− 1 TeV/n
 Similar spectral shape as Helium

antiproton/proton – progress status

antiproton/proton – progress status

CR propagation with Kraichnan-like diffusion

Summary

Lepton fluxes

Clear *excess* of high-energy positron at E>10 GeV. Hint of cutoff above 250 GeV

- ✓ Cannot be accounted in standard diffusion models.
- ✓ Need of an extra nearby source of high-energy leptons.
- \rightarrow AMS data at higher energy may clarify the origin of the excess

Antiproton/proton ratio

- AMS-02 data are still preliminary.
- o Clear tension with standard model expectation
- → Final pbar/p measurements at full statistics in the range 0.5 500 GeV
- \rightarrow Improve model predictions, pin down uncertainties

Proton, helium and nuclei

- Progressive spectral hardening Proton and He fluxes above ~100 GeV/n
- The p/He ratio decreases power-law at rigidity 45-1800 GV, with slope ~0.08
- Lithium, Carbon, B/C ratio measurements at GeV-TeV energies are in progress
- \rightarrow High-energy behaviour of Z>2 nuclei may bring precious insights

Positron excess: sources of HE positrons

Standard prediction: of e+ from p+ISM collisions →Cannot account for the observed positron data →Background for new physics/astrophysicssignals

Nearby source of high-energy positrons: pulsar

Nearby Pulsar scenario

- ✓ SNRs: electron, hadrons
- ✓ hadrons+ ISM collisions: secondary e+ and e-
- PWN: primary e+ and e-

No consequences for the phenomenology of CR hadrons

Nearby source of high-energy positrons: SNR

SNRs: electron, hadrons, e+ from p-p collisions

hadrons+ ISM collisions: secondary e+ and e-

Old SNR scenario

Two components scenario: local SNR + Galactic enseble

two SNR components in the CR flux

Nearby source component for the GeV-TeV flux (and e+ excess) Large-scale SNR distribution in the Galaxy

Connection between hadron spectra and positron excess [NT & F.Donato, 1502.06150 (2015)]
 No expected rise in the B/C ratio. In agreement with PAMELA & AMS-02 data.

New phenomena in cosmic-ray propagation?

Diffusion coefficient is not separable into energy and space coordinates \rightarrow no power-law **Shallower diffusivity in the region close to the Galactic disk** \rightarrow high-energy flattening

Two-halo model

- ✓ Predicted flattening in all nuclei and sec/pri ratios
- Enhanced antimatter production at high energy
- Connection with gamma-rays and anisotropy

New phenomena in cosmic-ray propagation?

Diffusion coefficient is not separable into energy and space coordinates \rightarrow no power-law **Shallower diffusivity in the region close to the Galactic disk** \rightarrow high-energy flattening

Two-halo model: NT 1204.4492 (2012)

- ✓ Predicted flattening in all nuclei and sec/pri ratios
- Enhanced antimatter production at high energy
- ✓ Connection with gamma-rays and anisotropy

→ Predicts a enhanced positron flux at high-energy

Uncertainties in CR propagation and antiproton production

Uncertainties in p/p ratio

In CR propagation

From standard diffusion models with p/He injection spectra based on new AMS data

AMS capability in constraining the transport parameters before (a) and after (b) accounting for intrinsic nuclear uncertainties in CR propagation models 39

Summary

Lepton fluxes

Clear *excess* of high-energy positron at E>10 GeV. Hint of cutoff above 250 GeV

- \checkmark Cannot be accounted in standard diffusion models.
- ✓ Need of an extra nearby source of high-energy leptons.
- ightarrow AMS data at higher energy may clarify the origin of the excess

Antiproton/proton ratio

- o AMS-02 data are still preliminary.
- Clear tension with standard model expectation
- ightarrow Final pbar/p measurements at full statistics in the range 0.5 500 GeV
- → Improve model predictions, pin down uncertainties

Proton, helium and nuclei

- Progressive spectral hardening Proton and He fluxes above ~100 GeV/n
- The p/He ratio decreases power-law at rigidity 45-1800 GV, with slope ~0.08
- Lithium, Carbon, B/C ratio measurements at GeV-TeV energies are in progress
- \rightarrow High-energy behaviour of Z>2 nuclei may bring precious insights

In 4.5 years, AMS has collected >80 billion events.

The accuracy of the AMS data is tremendously improving our understanding of cosmic ray transport and will help to shed a light on the nature of dark matter

40

Fragmentation studies in the detector

Redundancy in Z-measurements allows us to study different fragmentation processes appearing at different levels in the detector.

AMS-02 : Evidence of fragmentation Carbon \rightarrow Boron

Carbon \rightarrow Boron in Upper TOF

Optimized for high-Z measurements

-Large dinamical range: Z[~] 1 - 30 -Many layers of active material. -Many independent evaluations of Z.

Dedicated Trigger for Z>1:

-4/4 TOF planes fired -Multiple TOF hits allowed -NACC <5

Minimum bias trigger:

-1/100 prescaling!! -3/4 TOF fired -No conditions on NACC

