Luc Darmé

LPTHE (Paris), UPMC

November 24, 2015

Based on works realised in collaboration with K. Benakli, M. Goodsell and P. Slavich (1312.5220, 1508.02534 and 1511.02044)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Introduction

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > 2/28

Hierarchy problem

- Need to keep all SUSY particles at EW scale to control the Higgs mass (if not, little hierarchy problem)
- ► Gauge coupling unification
- ▶ Dark Matter candidate (WIMP) ∫

Split SUSY idea \longrightarrow keep only the SUSY fermions (higgsinos and gauginos) at EW scale, but have all scalar superpartners heavy at SUSY scale M_S

 \blacktriangleright Can experimental measurements say something about M_S ?

Hierarchy problem

- Need to keep all SUSY particles at EW scale to control the Higgs mass (if not, little hierarchy problem)
- Gauge coupling unification
- ► Dark Matter candidate (WIMP)

Require only SUSY fermions

Split SUSY idea \longrightarrow keep only the SUSY fermions (higgsinos and gauginos) at EW scale, but have all scalar superpartners heavy at SUSY scale M_S

 \blacktriangleright Can experimental measurements say something about M_S ?

Hierarchy problem

- Need to keep all SUSY particles at EW scale to control the Higgs mass (if not, little hierarchy problem)
- Gauge coupling unification

Dark Matter candidate (WIMP)
 Require only SUSY fermions

Split SUSY idea \longrightarrow keep only the SUSY fermions (higgsinos and gauginos) at EW scale, but have all scalar superpartners heavy at SUSY scale M_S

 \blacktriangleright Can experimental measurements say something about M_S ?

- ▶ Split SUSY leaves aside a "little hierarchy problem" since $M_S \gg {\rm EW}$ scale.
- \blacktriangleright M_S is still constrained by

The Higgs mass measurement (Section 1)

DM and cosmology (Section 2)

- \blacktriangleright In usual Split SUSY models, "Mini-Split" $\longrightarrow M_S \lesssim 10^6$ GeV
- ▶ In Fake Split SUSY models (FSSM) , "Mega-Split":

 $\blacksquare Higgs mass \longrightarrow No constraint$

Assuming standard Cosmology $\longrightarrow M_S \lesssim 10^{10} \text{ GeV}$

 \blacktriangleright Main difference \longrightarrow Yukawa couplings of the SUSY fermions.

- ▶ Split SUSY leaves aside a "little hierarchy problem" since $M_S \gg {\rm EW}$ scale.
- \blacktriangleright M_S is still constrained by

The Higgs mass measurement (Section 1)

DM and cosmology (Section 2)

- ▶ In usual Split SUSY models, "Mini-Split" $\longrightarrow M_S \lesssim 10^6$ GeV
- ▶ In Fake Split SUSY models (FSSM) , "Mega-Split":

■ Higgs mass → No constraint

- Assuming standard Cosmology $\longrightarrow M_S \lesssim 10^{10} \text{ GeV}$
- \blacktriangleright Main difference \longrightarrow Yukawa couplings of the SUSY fermions.

How high could SUSY go ? └─ Recovering the Higgs mass

Recovering the Higgs mass

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

How high could SUSY go ? Recovering the Higgs mass Split SUSY and Mini-Split

Split SUSY and Higgs mass

- ► A "prediction" for the SM-like Higgs mass $M_H^2 = 2\lambda v^2$ since:
 - experiment gives us
 SM-Higgs VEV v
 - boundary conditions at M_S gives us
 - $\lambda = \frac{1}{4} \left[g'^2 + g^2 \right] \cos^2 2\beta$ at tree level.
- Fine-tuning a light Higgs gives $\tan \beta = \sqrt{\frac{m_{H_d}^2 + \mu^2}{m_{H_u}^2 + \mu^2}} \approx \sqrt{\frac{m_{H_d}^2}{m_{H_u}^2}}$

• If
$$m_{H_d} = m_{H_u}$$
 at the GUT scale, then $\tan \beta \gtrsim 2-3$

Recovering the Higgs mass

Split SUSY and Mini-Split

Higgs mass prediction - Split SUSY

Higgs-mass function of M_S for Split SUSY for $\tan \beta = 1, 2$ or 20.

How high could SUSY go ? Recovering the Higgs mass FSSM and Mega-Split

Fake Split SUSY Models (FSSM)

- Replace higgsinos (and possibly gauginos) by F-higgsinos (and F-gauginos) with same quantum numbers but suppressed Yukawa couplings.
 - "Real" higgsinos (and gauginos) are heavy.
- Approximate global symmetry to protect the splitting.
 - A U(1)_F for both F-gauginos and F-higgsinos (FSSM-I)
 - An R symmetry for F-higgsinos only (FSSM-II)

Recovering the Higgs mass

FSSM and Mega-Split

Higgs-mass function of M_S for the FSSM. $\tan \beta = 1, 2$ or 20.

How high could SUSY go ? Recovering the Higgs mass FSSM and Mega-Split

Origin of the new behaviour

 Suppressed Yukawas for F-particles

• "Real" higgsinos are heavy: $m_{H_{d,u}} \sim \mu \sim \mathcal{O}(M_S)$: • $\tan \beta = \sqrt{\frac{m_{H_d}^2 + \mu^2}{m_H^2 + \mu^2}} \sim 1$

 $\tan\beta$ function of M_S and of the trilinear at $M_S.$

Running of λ in Split SUSY and FSSM. $M_S = 2 \times 10^{12}$ GeV.

FSSM and Mega-Split

Summary - Higgs mass

Higgs-mass function of M_S for the FSSM (tan $\beta = 1$)

and Split SUSY ($\tan \beta = 2$).

FSSM models: simple modification of the effective theory below M_S

- FSSM-I, SM, F-higgsinos and F-gauginos
- FSSM-II, SM, F-higgsino and gauginos
- In both cases, Higgs mass
 "prediction" drastically
 different than Split SUSY.

SUSY scale and cosmology

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

How high could SUSY go ?
-SUSY scale and cosmology
└─(F-)gluinos life-time

- Long-lived gluinos are basically ruled out by observations (heavy isotopes searches, CMB, diffuse gamma ray background and BBN).
- ▶ In FSSM-II, gluinos are long-lived as Split SUSY (since decay through squarks are suppressed).

 In FSSM-I, F-gluinos are even more long-lived (couplings suppressed by the approximate symmetry which keeps them light).

$$\begin{array}{l} \bullet \quad \tau_{\tilde{g}'} \ \sim \ 4 \ {\rm sec} \times \left(\frac{M_S}{10^7 {\rm GeV}} \right)^6 \times \left(\frac{1 \ {\rm TeV}}{m_{fg}} \right)^7 \\ \hline & \quad {\rm Imply} \ M_S \lesssim 10^8 \ {\rm GeV} \end{array}$$

- Since FSSM have the same gauge interactions than Split SUSY, we expect rather similar DM candidates. Using micrOMEGAs, we find the correct relic density for:
 - F-Higgsino LSP with mass 1.1 TeV
 - (F-)Wino LSP with mass 2.4 TeV
- Interesting issue
 - F-higgsinos LSP are inelastic Dark Matter

- Splitting between F-higgsinos suppressed by the approximate symmetry which keeps them light.
 - Inelastic scattering over nucleons allowed → direct detection possible!
 - We took a conservative bound of 300 keV from LUX analysis
- F-higgsinos mass splitting is

EXAMPLE FSSM-I,
$$\delta \sim 200 \text{ keV} \cdot \left(\frac{400 \text{ TeV}}{M_S}\right)^2 \left(\frac{m_{fg}}{4 \text{ TeV}}\right)$$

EXAMPLE FSSM-II, $\delta \sim 200 \text{ keV} \cdot \left(\frac{10^7 \text{ GeV}}{M_S}\right) \left(\frac{\mu}{1 \text{ TeV}}\right) \left(\frac{4 \text{ TeV}}{m_{fg}}\right)$

- ▶ Therefore if F-higgsinos Dark Matter, M_S is bounded:
 - FSSM-I, $M_S \lesssim 10^6~{
 m GeV}$
 - $\blacksquare~{\rm FSSM-II},~M_S \lesssim 10^8~{\rm GeV}$

How high could SUSY go ? └─ Conclusions

Conclusions

- ► In FSSM, the measured Higgs mass is not a constraint anymore, stark contrast with usual Split SUSY models.
- Cosmology constraints are very relevant for this class of models, especially gluino life-time.
 - We still can have a "Mega-Split" spectrum with M_S up to 10^{10} GeV
- If new light fermions discovered at LHC, we need to study their Yukawas!
- Collider phenomenology ?

How high could SUSY go ? └─Backup slides

Backup slides

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Well-tempered Bino/Higgsinos

Relic density as a function of F-Higgsino pole mass and Bino pole mass.

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ 19/28

Gauge coupling unification

From 1508.02534

Tachyonic Higgs soft masses

RGE for Higgs sector soft masses for $M_S = 10^5 {\rm \ GeV}$ in type-I and type-II FSSM.

Higgs mass prediction - High scale SUSY

Higgs-mass function of M_S for High-scale SUSY, Split SUSY and FSSM. $M_{\tilde{g}'}=\mu=2$ TeV (when relevant) and $\tan\beta=1$ or 40.

Stability in FSSM

Contour plot of the Higgs mass on the $M_S - \tan \beta$ plane, $M_{\tilde{g}'} = \mu = 2$ TeV. Yellowshaded region indicates where λ becomes negative during its running.

Toward a microscopic description:

- ► Above M_S, add to MSSM chiral multiplets in the adjoint representation of each gauge group (Dirac gauginos) → fermions are called *F-gauginos*¹.
- ▶ Also two Higgs-like $SU(2)_W$ doublets \rightarrow fermions are called *F*-higgsinos
- ▶ Suppose no R-symmetry (\neq from Split-SUSY style) protects gauginos and higgsinos masses \rightarrow get masses at M_S

¹Also arXiv:1312.2011 by E. Dudas, M. Goodsell, L.=Heurgier, 🖓 Tziveloglou 🔗 ແ

Realisation of FSSM-I: Getting light sfermions

- ► Use an approximate U(1) symmetry with only the "fake" particles charged under it (Froggatt-Nielsen style).
- The gaugino $(\lambda)/F$ -gaugino (χ) mass terms are of the form.

$$-\Delta \mathcal{L}_{\text{gauginos}} = M_S \left[\frac{1}{2} \lambda \lambda + \mathcal{O}(\varepsilon) \lambda \chi + \mathcal{O}(\varepsilon^2) \chi \chi + \text{h.c.} \right],$$

leading to light F-gaugino-like eigenstate and heavy gauginos-like eigenstate.

- ► SUSY-breaking mass terms of the usual MSSM scalars, fake adjoint scalars and F-Higgs scalars are not protected → heavy.
- ▶ We need to fine-tune the weak scale.

► The SM Higgs boson H is a linear combination of the original Higgs H_u, H_d and F-Higgs H'_u, H'_d doublets.

 $H \approx \cos\beta i\sigma^2 H_d^* + \sin\beta H_u + \mathcal{O}(\varepsilon)i\sigma^2 H_u'^* + \mathcal{O}(\varepsilon)H_d'$

- We have F-higgsinos and F-gauginos at low energy instead of Higgsinos and gauginos:
- $\varepsilon \sim \sqrt{\frac{\text{TeV}}{M_S}}$ determined by requiring TeV-scale F-particles.
- Same particle content as Split SUSY, but suppressed Higgsino and gauginos couplings. Realisation of weakly-coupled FSSM.

- ▶ We want the RG evolution of λ between M_Z and the GUT scale.
- ▶ Make use of perturbative situation: algorithmic procedure
 - 1. Start with SM values and crude approximations at M_Z , evolve it up to GUT scale, fix unified input there.
 - 2. Run it down to M_S , apply FSSM boundary conditions
 - 3. Iterate this procedure above M_S until CV (very fast)
 - 4. Run it down to M_Z , apply again SM boundary conditions
 - 5. Iterate the procedure below M_S until CV (very fast).
 - 6. Iterate the whole thing until CV (again very fast)
 - 7. Calculate Higgs mass at M_{top}

▶ Concerning our precision, the most salient points are:

- Two-loop QCD contributions while converting top pole mass to its MS counterpart.
- Full Split-SUSY two-loop RGEs.
- Dominant two-loop Higgs self-energy to obtain the pole mass, we also include leading-log contribution from three-loop diagrams with (F-)gluinos.
- We did not included threshold corrections at M_S but have estimated them as a GeV effect for $M_S \gtrsim 10^8$ GeV.