Testing leptogenesis in low-scale seesaw mechanisms

Michele Lucente

GDR Terascale, November 24th 2015

Based on:

A.Abada, G.Arcadi, V. Domcke and M.L., arXiv: 1507.06215 [hep-ph]

Leptogenesis in a nutshell

The Universe is matter dominated, the Standard Model cannot account for the observed BAU

 $Y_{\Delta B} = (8.6 \pm 0.01) \times 10^{-11}$

This result calls for physics beyond the SM

Sphalerons: non-perturbative solutions of the SM

 $\Delta(B-L)=0$

While sphalerons in thermal equilibrium

130 GeV $\lesssim T \lesssim 10^{12}~{\rm GeV}$

they convert any lepton asymmetry into a net baryon asymmetry

Baryogenesis via leptogenesis

Neutrino masses and leptogenesis

Type-I seesaw mechanism: SM + gauge singlet fermions N_I $\mathcal{L} = \mathcal{L}_{\rm SM} + i\overline{N_I}\partial N_I - \left(Y_{\alpha I}\overline{\ell_{\alpha}}\partial N_I + \frac{M_{IJ}}{2}\overline{N_I^c}N_J + h.c.\right)$

After electroweak phase transition $\langle \Phi \rangle = v \simeq 174 \text{ GeV}$

$$m_{\nu} \simeq -\frac{v^2}{2} Y^* \frac{1}{M} Y^{\dagger}$$

<u>The Lagrangian provides the ingredients for leptogenesis too</u>

Complex Yukawa couplings Y as a source of P
B' from sphaleron transitions until T_{EVV} ~ 140 GeV
sterile neutrinos deviations from thermal equilibrium

Sakharov conditions

Thermal leptogenesis

Sterile neutrinos in thermal equilibrium if $|Y| \gtrsim 10^{-7}$

Thermal leptogenesis: sterile neutrinos in equilibrium at large temperatures

S. Davidson, E. Nardi and Y. Nir, arXiv:0802.2962 [hep-ph] A. Abada, S. Davidson, A. Ibarra, F.-X. Josse-Michaux, M. Losada and A. Riotto, hep-ph/0605281 A. Pilaftsis and T. E. J. Underwood, hep-ph/0309342

E. K. Akhmedov, V. A. Rubakov and A. Y. Smirnov, hep-ph/9803255

Sterile neutrinos out of equilibrium at large temperatures

Flavoured leptogenesis

$M \sim GeV \ll T$

Negligible Majorana character \rightarrow total lepton number is conserved

How do the mechanism work?

E. K. Akhmedov, V. A. Rubakov and A. Y. Smirnov, hep-ph/9803255 T. Asaka and M. Shaposhnikov, hep-ph/0505013 M. Shaposhnikov, arXiv:0804.4542 [hep-ph] T. Asaka and H. Ishida, arXiv:1004.5491 [hep-ph] T. Asaka, S. Eijima and H. Ishida, arXiv:1112.5565 [hep-ph] L. Canetti, M. Drewes and M. Shaposhnikov, arXiv:1204.4186 [hep-ph] L. Canetti, M. Drewes, T. Frossard and M. Shaposhnikov, arXiv:1208.4607 [hep-ph] P. Hernández, M. Kekic, J. López-Pavón, J. Racker and N. Rius, arXiv:1508.03676 [hep-ph]

Naturalness argument

Need a pair of **degenerate neutrinos** or **hierarchical yukawas**: fine-tuning or **symmetry**

Approximate lepton number at the origin of mass degeneracy

$$M = \underbrace{M_0}_{\Delta L = 0} + \underbrace{\Delta M}_{\Delta L
eq 0}$$

$$|\Delta M|| \ll ||M_0||$$

degenerate pseudo-Dirac pairs of sterile neutrinos

Minimal setup: SM + 2 sterile fermions with opposite lepton number

Field content:
$$\mathbf{v}_{L} + \mathbf{N}_{I} + \mathbf{N}_{2}$$
 $M_{0} = \begin{pmatrix} 0 & vy & 0 \\ vy & 0 & \Lambda \\ 0 & \Lambda & 0 \end{pmatrix}$
 $\mathbf{m}_{V} = \mathbf{0}$ "Lepton number conserving"
 $\mathbf{M}_{I} = \mathbf{M}_{2} = \Lambda$ mass spectrum

$$(some) Minimal mechanisms$$

$$M_0 = \begin{pmatrix} 0 & vy & 0 \\ vy & 0 & \Lambda \\ 0 & \Lambda & 0 \end{pmatrix} \qquad Basis: (v_L, N_1^c, N_2^c) \qquad \begin{array}{c} L=1 \\ L=-1 \end{pmatrix}$$

Need to perturb M_0 to generate $m_v \neq 0$ and $\Delta M_{heavy} \neq 0$

Add small $\Delta L=2$ operators (assume $\epsilon, \zeta, \zeta' \ll I$)

$$\Delta M_{linear} = egin{pmatrix} 0 & 0 & \epsilon vy \ 0 & 0 & 0 \ \epsilon vy & 0 & 0 \end{pmatrix} \quad \Delta M_{ISS} = egin{pmatrix} 0 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & \zeta \Lambda \end{pmatrix} \quad \Delta M_{loop} = egin{pmatrix} 0 & 0 & 0 \ 0 & \zeta' \Lambda & 0 \ 0 & 0 & 0 \end{pmatrix}$$

Toy model (one active neutrino)

	ISS	Linear	Loop
$m_{ u}$	$\zeta y^2 rac{v^2}{\Lambda}$	$2\epsilon y^2rac{v^2}{\Lambda}$	$\left \zeta' y^2 rac{v^2}{\Lambda} f\left(rac{\Lambda^2}{M_W^2} ight) ight $
ΔM^2_{32}	$2\zeta\Lambda^2$	$4\epsilon v^2 y^2$	$2\zeta'\Lambda^2$

 $M_1 = m_{\nu}$ $M_{2,3} \simeq \Lambda$

sterile neutrinos

Only ISS: too large mass splitting or too small neutrino masses **Only linear**: no mass splitting when Higgs VEV v=0

The minimal framework

Weak washout regime: analytical solution

$$F \equiv Y^{\text{eff}} \qquad |F_{\alpha I}| < \sqrt{2} \times 10^{-7}$$

$$Y_{\Delta B} = \frac{n_{\Delta B}}{s} = \frac{945 \, 2^{2/3}}{2528 \, 3^{1/3} \, \pi^{5/2} \, \Gamma(5/6)} \frac{1}{g_s \, (T_{\rm W})} \sin^3 \phi \, \frac{M_0}{T_{\rm W}} \frac{M_0^{4/3}}{(\Delta m^2)^{2/3}} \, Tr \left[F^{\dagger} \delta F \right]$$

$$\mathcal{L} \quad \ni \quad F_{\alpha I} \,\overline{\ell_L^{\alpha}} \,\widetilde{H} \, N_I + h.c.$$

$$\delta_{\alpha} = \sum_{I>J} \operatorname{Im} \left[F_{\alpha I} \left(F^{\dagger} F \right)_{IJ} F_{J\alpha}^{\dagger} \right]$$

$$H = \frac{T^2}{M_0}$$

$$\frac{N_C h_t^2}{64\pi^3} = \frac{\sin\phi}{8}$$

Weak washout regime: numerical comparison

Weak washout: viable solutions

LNV parameters

Normal Hierarchy Inverted Hierarchy

Sterile fermions phenomenology

C. Adams et al., arXiv:1307.7335 [hep-ex] S. Alekhin et al., arXiv:1504.04855 [hep-ph]

Strong washout regime: numerical solution

The analysis is computationally demanding: only a set of benchmark points is solved

Lepton number violation as a key to low scale leptogenesis

Analytical solution in the weak washout regime

Viable leptogenesis in weak washout, but solutions cannot be probed

Viable leptogenesis in strong washout, testable at future facilities

Strong washout regime: "flavoured" solutions

Strong strong washout regime

 $Y^{\text{eff}} \approx \mathcal{O}\left(10^{-6}\right)$

Dirac and Majorana phase dependence

The ISS setup

No viable leptogenesis in the weak washout regime in the ISS setup