Search for a low mass Higgs boson decaying into 2 photons in CMS (CMS-HIG-14-037)

C.Carrillo*, <u>B.Courbon</u>*, G.Chen**, M.Chen**, J.Fan**, S.Gascon-Shotkin*, M.Lethuillier*, D.Sabes*, L.Sgandurra*, Y.Shen**, J.Tao**, S.Zhang**

* IPN Lyon, ** IHEP Beijing

GDR Terascale, Grenoble, November 24th 2015

Back-up

Outline

- Introduction
- 2 Analysis strategy
- 3 Results
- 4 Summary and plans

Motivations

- BSM models such as the general 2HDM and NMSSM predict an extended Higgs sector. One can identify H125 as the next-to-lightest scalar Higgs boson h₂, and then focus on the lightest scalar h₁. Strong interest from some theoreticians Ellwanger et al., JHEP 1203 (2012) 044 ...
- A scan of the NMSSM parameter space (with all the constraints on Higgs and new physics) has shown that it would be possible to have a light Higgs boson with a signal strength of up to 3.5 × the SM Higgs boson, with a mass between 85 and 95 GeV
 - J. Fan et al., Chinese Phys. C 38 073101
- Small excess at LEP at m ~ 98 GeV in the bb channel (3 of the 4 experiments)
 LEPHWG. Phys. Lett. B565 :61-75,2003
- During Run 1, the standard $H \to \gamma \gamma$ analysis search range was [110,150] GeV
- \rightarrow Goal : Extension of the $H\rightarrow\gamma\gamma$ analysis in the interval [80,110] GeV

Analysis overview

Introduction

- Clear signature : 2 high-p_T isolated photons
- Large smoothly-decreasing diphoton background (continuum), reducible (jet-jet and γ +jet with jet faking photon) and irreducible $(\gamma\gamma)$
- Low-mass analysis specificity: Drell-Yann background, with electrons from the Z misidentified as photons
 - Use of a stricter electron veto based on the Pixel detector
 - Include relic DY contribution in background model
- Mass resolution is crucial (calibrations, energy regression and vertex identification)
- Classification of diphoton events to gain in sensitivity
- Analysis inherited from the "standard $H \rightarrow \gamma \gamma$ " analysis HIG-13-001 EPJC(74)3076

Back-up

- 2012 dataset (19,7 fb⁻¹, 8 TeV)
- Main Trigger : $p_T > 26(18)$ GeV for the leading (trailing) photon; $m_{\gamma\gamma} > 70$ or 60 GeV (period-dependant); loose isolation and shower shape criteria

Mass resolution

$$m_{\gamma\gamma} = \sqrt{2E_1E_2(1-\cos\alpha_{1,2})}$$

Energy measurements:

- ECAL performance (intercalibrations, crystal transparency changes corrections)
- High-level correction (photon energy regression)
- Final energy scale extraction from $Z \rightarrow ee$ events (cross-check with $Z \rightarrow \mu\mu\gamma$)

EGM-14-001, JINST 10 (2015) P08010

Vertex ID:

- Angular term contribution negligible if $\delta z < 1$ cm
- CMS ECAL has no intrinsic pointing capability
- We use Boosted Decision Trees (BDT) to identify the primary vertex, based on the kinematics of the recoiling tracks + the tracks of identified conversions
- Then a second BDT estimates the probabilty of correct vertex assignment
- More than 80% average probability of correct vertex assignment

Selection et classification

Photon Selection

- To reject neutral mesons (reducible background), we apply a BDT classifier ("photon ID") inherited from the standard analysis
- Based on shower shape and isolation variables

Eur. Phys. J. C 74 (2014) 3076

Event classification

- To gain in sensitivity, we split events into classes according to their expected signal / background ratio
- We use the "diphoton BDT" classifier from the standard analysis
- Based on the mass resolution of the events and their kinematics (+ photon ID)
- We define 4 event classes
- Number of classes limited by DY statistic (→ no exclusive classes tagging production modes like standard analysis)

Signal Model

- We use $H \to \gamma \gamma$ MC samples with Higgs boson mass from 80 to 110 GeV, with a 5 GeV step.
- The signal shape correspond to that of a standard Higgs boson
- We fit the signal by a sum of gaussians in each event class for each process, and then combine them
- Between the mass points, the model is interpolated

Background model

- We model the DY contribution with a double-sided Crystal Ball function
- We extract the values of its parameters by fitting $Z \rightarrow ee$ MC events passing all our selection

- We model the continuum background with Bernstein polynomials (order chosen with a p-value test)
- Final background model: Bernstein polynomial + double-sided Crystal Ball, fitted to the data
- In the statistical interpretation the DCB fraction is let floating

Systematics uncertaincies following the standard analysis

Per event :

Introduction

Sources of systematic uncertainty	Uncertainty
Integrated luminosity	2.6%
Vertex finding efficiency	1.02%
Trigger efficiency	1.0%

- PDF uncertaincies : up to 2% (VBF, class 0), otherwise below 1%.
- \bullet QCD scale uncertaincies : up to 7.5% (ggh, class 0), otherwise below 1%
- Per photon :

Sources of systematic uncertainty	Uncertainty			
	Barrel	Endcap		
Photon preselection efficiency	1.0%	2.6%		
Photon identification BDT distribution	±0.01	1 (shape shift)		
Photon energy resolution distribution	±10% (% (shape scaling)		

 The uncertaincy on the energy scale in data ranges from 0.05% for unconverted photons in the barrel, to 0.1% for converted photons in the endcaps.

Systematics from Z peak modelling

- We choose a region with no signal: "single-fake" selection (1 photon candidate passing selection including electron veto and 1 photon candidate passing selection but failing electron veto)
- We calculate the differences in the fitted mean (μ) and width (σ) of the DCB between 'single-fake' data and MC, retain for each parameter the maximum difference among the 4 event classes
- We add these contributions in quadrature with the purely statistical error from the fits used to extract the final uncertainty values on these parameters

Event Class	μ (GeV)	$\Delta \mu_{stat}$ (GeV)	$\Delta \mu_{data-MC_{all}}$ (GeV)	$\Delta \mu_{MC_{all}-MC_{DY}}$ (GeV)	$\Delta \mu_{tot}$ (GeV)
0	89.9	0.3	0.64	0.40	0.81
1	90.6	0.2	0.64	0.40	0.78
2	89.6	0.1	0.64	0.40	0.76
3	89.24	0.08	0.64	0.40	0.76

Event Class	σ (GeV)	$\Delta\sigma_{stat}(\text{GeV})$	$\Delta \sigma_{data-MC_{all}}$ (GeV)	$\Delta \sigma_{MC_{all}-MC_{DY}}$ (GeV)	$\Delta\sigma_{tot}(\text{GeV})$
0	1.5	0.3	1.46	1.70	2.26
1	1.8	0.2	1.46	1.70	2.25
2	1.8	0.2	1.46	1.70	2.25
3	3.22	0.08	1.46	1.70	2.24

Results (all production processes)

Local P-value

- ullet Small excess (1.9 σ , without Look Elsewhere Effect) at 97.5 GeV, approximately the same mass as LEP excess
- Worsening of the sensitivity around the Z peak

Results (sum of ggh + tth production processes)

Results (sum of vbf + vh production processes)

m_H (GeV)

CMS and ATLAS results

Limits on the Higgs total cross section (CMS)

- These plots consider only ggh production mode
- CMS : total cross section
- ATLAS : fiducial cross section
- ATLAS does not observe any excess around 98 GeV

Summary and plans

- Strong motivations for the search for a low mass Higgs boson predicted by some BSM models (2HDM, NMSSM)
- \bullet Extension of the standard $H \to \gamma \gamma$ analysis to the interval [80,110] GeV with run 1 data
- Special feature of the analysis : additional DY contribution to reduce and model
- No evidence for new particle
- Looking forward to redoing the analysis with Run 2 13 TeV data!

BACK-UP

Introduction Analysis strategy Results Summary and plans Back-up

h_1 signal strength vs mass in 2HDM and NMSSM

Figure 1: Top: signal strength in the $gg \to h_1 \to \gamma \gamma$ channel. Bottom: ggh production mode versus VBF, both normalised to the SM. The colour code is the following: Green (light grey) points are all points passing flavour and theoretical constraints, blue points (grey) are a subset of those which also pass LEP constraints on h_1 and red (dark grey) points pass in addition the LHC couplings constraint on h_2 .

Cacciapaglia, Deandrea, Drieu La Rochelle, Flament; Phys.Rev. D91 (2015) 1, 015012

Low-mass Higgs boson searches with LEP data

Introduction

LEPHWG, Phys. Lett. B565 :61-75, 2003

Back-up

Figure 8: The background confidence $1 - CL_b$ as a function of the test mass m_H for subsets of the LEP data. The same notation as in Figure $\overline{0}$ is used. Plots (a) to (d): individual experiments, (e): the four-iet and (f): all but the four-iet final state, with the data of the four experiments combined.