Fermionic extensions of the SM in light of the Higgs couplings

Nicolas Bizot

based on arXiv: 1508.01645 with M. Frigerio

24 November 2015

Table of contents

Classification of fermionic extensions of the Standard Model

Experimental constraints

3 An extension with two vector-like leptons

Table of contents

Classification of fermionic extensions of the Standard Model

2 Experimental constraints

3 An extension with two vector-like leptons

Framework

So far there is no discrepancies compare to the SM in the Higgs couplings measurements.

 \Rightarrow Important to understand where large effects of new physics are still possible.

We will consider the following framework:

- Renormalizable fermionic extensions of the SM.
- Minimal sets of new fermions with up to 4 new chiral multiplets.
- No mixing with the two SM light generations to avoid strong constraints coming from flavour observables.
- Modifications of the Higgs couplings because we are interested by Higgs phenomenology.

Requirements for the classification

We imposed that the extensions respect the 3 following requirements.

1) No gauge Anomalies (Theoretical consistency)

SM is anomaly free \Longrightarrow Anomaly-cancellation imposed on the set of new fermions.

2) No massless fermions after EWSB (Phenomenological consistency)

We should have seen experimentally a massless fermions.

3) Modifications of the Higgs couplings (Focus of the analysis)

We require at least one Yukawa coupling associated to the new fermions.

Result of the classification

We found a large number of fermionic extensions of the SM. They can be classified according to the way in which the fermions get their masses.

Three ways to get a mass

- From the Higgs vev only (purely chiral extensions).
- From Majorana mass terms (recover seesaw extensions).
- From Dirac mass terms (extensions with vector-like fermions).
 Vector-Like ≡ Left and Right chiralities transform in the same way.

New fermions can modify the Higgs couplings in two different ways.

Two ways to affect the Higgs couplings

- By mixing with SM fermions.
- By Yukawa couplings involving the new fermions only (without mixing with the SM).

Table of contents

Classification of fermionic extensions of the Standard Model

Experimental constraints

3 An extension with two vector-like leptons

Electroweak precision tests

S and T parameters

Effects of new fermions in vacuum polarization amplitudes are parametrised by the S and T parameters.

$Zf\overline{f}$ couplings

New fermions mixing with the SM ones affect the $Z\!f\,\overline{f}$ couplings.

- New quarks: $Zb\bar{b}$ coupling
- New leptons: $Z \to \tau \tau$, invisible

Direct searches and Higgs couplings

Direct searches

Direct searches at colliders put a lower limit on the mass of the new fermions.

Higgs couplings

Constraints in Higgs couplings are expressed in term of signal strengths:

$$\mu_{\alpha} \equiv \frac{\sigma(pp \to h)}{\sigma^{SM}(pp \to h)} \frac{\Gamma(h \to \alpha)}{\Gamma^{SM}(h \to \alpha)} \frac{\Gamma_h^{SM}}{\Gamma_h} \ ,$$

$$\alpha = \gamma \gamma, ZZ^*, WW^*, b\overline{b}, \tau \tau, \gamma Z, \cdots$$

We consider only the leading order corrections to the Higgs couplings.

- Tree-level couplings: $hb\overline{b}$, $h\tau\tau$, hZZ^* and hWW^* .
- Loop-induced couplings: hgg, $h\gamma\gamma$ and $h\gamma Z$.

hgg, $h\gamma\gamma$ are strongly constrained but for $h\gamma Z$ there is still place for large deviations as $\mu_{\gamma Z} \lesssim 10$.

Table of contents

Classification of fermionic extensions of the Standard Model

Experimental constraints

3 An extension with two vector-like leptons

Two vector-like leptons - Minimal case

We found many interesting features in the fermionic extensions that we have studied. Let me focus only on large deviations in the $h\gamma Z$ coupling.

Consider the minimal case with 2 vector-like leptons: a singlet and a doublet with free hypercharge and no mixing with the SM.

Minimal case
$$\psi_{1L}, \psi_{1R} \sim (1, 1, Y) + \psi_{2L}, \psi_{2R} \sim (1, 2, Y + \frac{1}{2})$$

$$-\mathcal{L}_{\psi_{1}\psi_{2}} = \widetilde{\lambda}\overline{\psi_{1L}}\widetilde{H}\psi_{2R} + \lambda\overline{\psi_{2L}}H\psi_{1R} + M_{1}\overline{\psi_{1L}}\psi_{1R} + M_{2}\overline{\psi_{2L}}\psi_{2R} + h.c.$$

 \Rightarrow 5 real parameters: 2 Yukawas, 2 masses and 1 phase φ .

There is a mixing in the Q = Y sector:

$$\mathcal{M}_Y = egin{pmatrix} M_1 & rac{ ilde{\lambda}_V}{\sqrt{2}} \ rac{\lambda_V}{\sqrt{2}} & M_2 \end{pmatrix} = U_L diag(m_1, m_2) U_R^\dagger$$

 \Rightarrow The two mixing states have a free electric charge Q and they couple to the Higgs.

Higgs couplings to two photons $(h\gamma\gamma)$

The two mixing states contribute only to $h\gamma\gamma$ and $h\gamma Z$ couplings as they are colourless and don't mix with SM.

General expression with new fermions

$$\Gamma(h \to \gamma \gamma) = \frac{\alpha^2 m_h^3}{256 \pi^3 v^2} \left[|A_1(\tau_W) + \mathcal{A}_f^{\gamma \gamma}|^2 + |\tilde{\mathcal{A}}_f^{\gamma \gamma}|^2 \right]$$

CP-even and CP-odd parts:

$$\overline{\mathcal{A}_f^{\gamma\gamma} = \sum_i \frac{y_i v}{m_i} N_{ci} Q_i^2 A_{1/2}(\tau_i)}, \qquad \tilde{\mathcal{A}}_f^{\gamma\gamma} = \sum_i \frac{\tilde{y}_i v}{m_i} N_{ci} Q_i^2 \tilde{A}_{1/2}(\tau_i)$$

Form factors are constant (negligible) for heavy (light) masses. ⇒ Loop-induced couplings are sensitive to heavy new fermions.

Higgs couplings to photon Z $(h\gamma Z)$

We re-calculated the SM expressions and computed the most general expressions that apply to any models with new fermions.

General expression with new fermions

$$\begin{split} & \Gamma(h \to \gamma Z) = \frac{\alpha g^2 c_w^2 m_h^3}{512 \pi^4 v^2} \left(1 - \frac{m_Z^2}{m_h^2}\right)^3 \left[\mid A_1(\tau_W, \lambda_W) + \mathcal{A}_f^{Z\gamma} \mid^2 + \mid \tilde{\mathcal{A}}_f^{Z\gamma} \mid^2 \right] \\ & \mathcal{A}_f^{Z\gamma} = \sum_{j,k} \frac{N_{ck} Q_k v}{c_w^2 \sqrt{m_j m_k}} \left[\text{Re}(g_{kj}^V y_{jk}) a_{1/2}(m_j, m_k, m_k) + i \text{Im}(g_{kj}^A \tilde{y}_{jk}) b_{1/2}(m_j, m_k, m_k) \right] \\ & \tilde{\mathcal{A}}_f^{Z\gamma} = \sum_{j,k} \frac{N_{ck} Q_k v}{c_w^2 \sqrt{m_j m_k}} \left[\text{Re}(g_{kj}^V \tilde{y}_{jk}) \tilde{a}_{1/2}(m_j, m_k, m_k) + i \text{Im}(g_{kj}^A y_{jk}) \tilde{b}_{1/2}(m_j, m_k, m_k) \right] \end{split}$$

Generally a large $\mu_{\gamma Z}$ implies a too large deviation in the $\gamma \gamma$ channel. However the structures of the two couplings are different, $h\gamma Z$ contains:

- Loops with 2 different mass eigenstates.
- Vector (g_{ki}^V) and axial (g_{ki}^A) Z couplings.
- \Rightarrow Exploiting this difference, we found two mechanisms realizing $\mu_{\gamma Z} \gg \mu_{\gamma \gamma}.$

First mechanism for a large γZ signal strength

Consider the possibility of two degenerate masses for the mixing states: $m_1=m_2\equiv m_\psi$

$h\gamma\gamma$ coupling

$$\mathcal{A}_{NP}^{\gamma\gamma}=2\,Q^{2}F\left(\theta_{L},\theta_{R},\varphi\right)A_{1/2}\left(\tau_{\psi}\right)$$

$$F\left(\theta_{L},\theta_{R},\varphi\right)=s_{L}^{2}c_{R}^{2}+c_{L}^{2}s_{R}^{2}-2c_{L}s_{L}c_{R}s_{R}\cos\varphi$$

The interference with the SM is destructive.

 $\Rightarrow \mu_{\gamma\gamma}$ can be accidentally close to the SM if ${\cal A}_{NP}^{\gamma\gamma} \simeq -2{\cal A}_{SM}^{\gamma\gamma}$.

$h_{\gamma}Z$ coupling

$$\mathcal{A}_{NP}^{\gamma Z} = \frac{Q}{c_w^2} F\left(\theta_L, \theta_R, \varphi\right) \left(-\frac{1}{2} - 2 Q s_w^2\right) A_{1/2}\left(\tau_\psi, \lambda_\psi\right)$$

The interference with the SM is constructive at large Q.

 \Rightarrow Possible to reach $\mu_{\gamma {\it Z}} \simeq$ 7 with $\mu_{\gamma \gamma} \simeq 1$

(if $\varphi \neq 0$ there is an additional contribution from $\widetilde{\mathcal{A}}_{NP}^{\gamma Z}$).

Two vector-like leptons

Second mechanism for a large γZ signal strength

Consider the possibility of two different masses $m_1 \neq m_2$ for the mixing states and no CP violation.

$h\gamma\gamma$ coupling

 $\mathcal{A}_{NP}^{\gamma\gamma}$ is not proportional to the function $F\left(\theta_{L},\theta_{R},\varphi\right)$:

$$\mathcal{A}_{NP}^{\gamma\gamma} \simeq 2Q^2 \left[s_L^2 c_R^2 + c_L^2 s_R^2 - \left(\frac{m_1}{m_2} + \frac{m_2}{m_1} \right) c_L s_L c_R s_R \right] A_{1/2} (\tau_1)$$

 \Rightarrow Parameters can be tuned such that $\mathcal{A}_{NP}^{\gamma\gamma}\simeq 0$.

$h\gamma Z$ coupling

The contribution to the $h\gamma Z$ coupling is not cancelled in the same way.

 \Rightarrow Possible to reach $\mu_{\gamma Z} \simeq 2$ with $\mu_{\gamma \gamma} \simeq 1$.

Conclusion

I presented 2 mechanisms realizing $\mu_{\gamma Z}\gg \mu_{\gamma\gamma}$ with $\mu_{\gamma Z}$ few times larger than the SM prediction. These two mechanisms are realized for:

$${\cal A}_{NP}^{\gamma\gamma} \simeq -2 {\cal A}_{SM}^{\gamma\gamma} \; (\mu_{\gamma Z} \simeq 7) \qquad {
m or} \qquad {\cal A}_{NP}^{\gamma\gamma} \simeq 0 \; (\mu_{\gamma Z} \simeq 2)$$

The projection for 300 fb^{-1} is $\Delta\mu_{\gamma Z}/\mu_{\gamma Z}\sim 0.5$

⇒ LHC will be able to probe these two mechanisms.

Others interesting features

We also found interesting features in the others fermionic extensions (1508.01647) that we have studied:

- Some chiral families are still allowed.
- The decays of the Higgs into leptons ($h \to \nu' \nu'$, $h \nu \nu'$ and $\tau \tau'$) can affect significantly the total Higgs width.
- A large mixing with the SM fermions is possible if there is a cancellation in the T parameter or a custodial symmetry protecting the T parameter and the Zbb couplings.

Thanks for your attention!

Projections of Higgs couplings measurements

More on $h\gamma\gamma$ and $h\gamma Z$ couplings

- $\Gamma^{SM}(h \to \gamma \gamma)/\Gamma^{SM}(h \to \gamma Z) \simeq 1.5$
- In the SM top and W loops dominate: $\mathcal{A}_{\gamma\gamma}^{SM} \simeq \mathcal{A}_{\gamma\gamma,t}^{SM} + \mathcal{A}_{\gamma\gamma,W}^{SM}$ and interfere destructively: $\mathcal{A}_{\gamma\gamma,W}^{SM}/\mathcal{A}_{\gamma\gamma,t}^{SM} \simeq -4.6$
- In the SM top and W loops dominate: $\mathcal{A}_{\gamma Z}^{SM} \simeq \mathcal{A}_{\gamma Z,W}^{SM} + \mathcal{A}_{\gamma Z,t}^{SM}$ and interfere destructively: $\mathcal{A}_{\gamma Z,W}^{SM}/\mathcal{A}_{\gamma Z,t}^{SM} \simeq -17.9$

Limitation of the analysis

- Computation of the <u>leading order corrections</u> to the Higgs and gauge couplings.
- Not an ultraviolet complete theory:
 Effective theory valid only at the multi TeV scale.

```
⇒ No constraints from coupling evolution (vacuum stability, Landau poles, gauge unification, · · · )
```

- No cosmological considerations:
 - Rely in most case on specific assumptions on the early Universe evolution
 - ⇒ No bounds on the relic abundance of the new fermions.

$Zb\overline{b}$ couplings

Deviations

$$\mathcal{L}_{Zb\bar{b}} = \frac{g}{c_w} Z_{\mu} \bar{b} \; \gamma^{\mu} \left[\left(g^L_{b\bar{b},SM} + \delta g^L_{b\bar{b}} \right) P_L + \left(g^R_{b\bar{b},SM} + \delta g^R_{b\bar{b}} \right) P_R \right] b$$

- tree-level correction if b mixes with b' with different T_3 .
- 1 loop corrections from t' or quark with Q = -4/3.

Best fit incompatible with the SM at 2-3 σ (due to A_{FB}^b)

- \rightarrow Problem of measurement.
- \rightarrow Effect of new physics.

We choose to conservatively enlarge the ellipse by adding a systematic error in the SM direction.

Requirements for the classification

1) No Anomalies (Theoretical consistency)

• Gauge anomalies:

$$\begin{array}{lll} SU(3)_c - SU(3)_c - U(1)_Y & : & \sum_{i=1}^n N_{wi} C(R_{ci}) Y_i = 0 \\ SU(2)_w - SU(2)_w - U(1)_Y & : & \sum_{i=1}^n N_{ci} C(R_{wi}) Y_i = 0 \\ U(1)_Y - U(1)_Y - U(1)_Y & : & \sum_{i=1}^n N_{ci} N_{wi} Y_i^3 = 0 \\ grav - grav - U(1)_Y & : & \sum_{i=1}^n N_{ci} N_{wi} Y_i = 0 \end{array}$$

New fermion $\psi_i \sim (R_{ci}, R_{wi}, Y_i)$ under $SU(3)_c \times SU(2)_w \times U(1)_Y$

• Global SU(2) anomaly: $\sum_{i=1}^{n} N_{ci} C(R_{wi})$ integer number

2) No massless fermions after EWSB (Phenomenological consistency)

Massless fermions (except SM ν) should have:

- No colour $(R_c = 1)$
- No electric charge $(Q = T_3 + Y = 0)$
- No couplings to the Z boson $(T_3 \tan^2 \theta_w Y = 0)$
- ⇒ Majorana mass allowed.

$h\gamma\gamma$ form factors

- The form factors depend on $\tau_i = m_h^2/(4m_i^2)$.
- Heavy fermion limit: $A_{1/2}(0) = 4/3$, $\widetilde{A}_{1/2}(0) = 2$
- Light fermions contributions are negligible.
- Imaginary parts are non-zero for $m_i < m_h/2$

$h\gamma Z$ form factors

Differences with respect to $h\gamma\gamma$:

- Form factors modified due to the Z mass.
- Two fermions may run at the same time in the loop $(r \equiv m_j/m_K)$.
- Axial couplings to the Z boson.

Minimal chiral extension of the SM

The minimal chiral extension of the SM contains three coloured sextets.

$$\begin{split} \psi_{1L} \sim (6,2,0), \;\; & \psi_{2R} \sim \left(6,1,\frac{1}{2}\right), \;\; & \psi_{3R} \sim \left(6,1,-\frac{1}{2}\right) \\ & -\mathcal{L}_{\textit{chiral}} = \lambda_2 \overline{\psi_{1L}} \tilde{H} \psi_{2R} + \lambda_3 \overline{\psi_{1L}} H \psi_{3R} + \textit{h.c.}. \end{split}$$

 \Rightarrow Two mass eigenstates with charge $Q=\pm 1/2$ and masses $\lambda_{2,3} v/\sqrt{2}$

Constraints

- ullet Lightest fermion is stable and form a R-hadron $\Rightarrow m \gtrsim 1.4$ TeV
- One can respect the constraints on S and T.

Higgs couplings

$$\frac{\sigma(gg \to h)}{\sigma_{SM}(gg \to h)} \simeq [1 + 4C(R_c)]^2 \ge 121$$

⇒ Gluons fusion excludes all chiral models with coloured states.

Viable chiral extensions after LHC

Is there room for fermions that receive a mass from the Higgs vev only?

Two doublets + four singlets

$$(2,Y)_{L}\,,\ \, (2,-Y)_{L}\,,\ \, \left(1,-Y+\tfrac{1}{2}\right)_{L}\,,\ \, \left(1,-Y-\tfrac{1}{2}\right)_{L}\,,\ \, \left(1,Y+\tfrac{1}{2}\right)_{L}\,,\ \, \left(1,Y-\tfrac{1}{2}\right)_{L}$$

- No colour \Rightarrow No contribution to hgg coupling.
- VL masses are possible but they can be forbid by a global symmetry.

S and T parameters

In the custodial limit $T \simeq 0$ and $S \simeq \frac{1}{3\pi}$

 \Rightarrow S and T are small enough to be in the allowed region.

Higgs couplings

- $A_{new}^{\gamma\gamma} = 4(1+4Y^2)/3$ is in agreement with measurements if
 - 1) $\mathcal{A}_{new}^{\gamma\gamma}$ small for $|Y|\lesssim 0.3$ 2) $\mathcal{A}_{new}^{\gamma\gamma}\sim -2\mathcal{A}_{SM}^{\gamma\gamma}$ for $1.4\lesssim |Y|\lesssim 1.6$
- $\mathcal{A}_{new}^{\gamma Z} \simeq 2 \left[1 \left(1 + 8Y^2 \right) \tan^2 \theta_w \right] / 3$ $\Rightarrow \mu_{\gamma Z} \simeq 2.4 \text{ for } |Y| = 1.6 \rightarrow \text{Large contribution to } \gamma Z \text{ channel.}$

Large mixing- Cancellation in the T parameter

 X_T is a vector-like quark transforming in (3,2,7/6) under $SU(3)_C \times SU(2)_L \times U(1)_Y$.

$$\begin{split} T &\simeq \frac{3s_R^2}{16\pi c_W^2 s_W^2} \frac{m_{t'}^2}{m_Z^2} \left[\frac{4}{3} s_R^2 - \frac{m_t^2}{m_{t'}^2} \left(4 \ln \frac{m_{t'}^2}{m_t^2} - 6 \right) \right] \\ &\Rightarrow \text{Cancellation leads to an upper limit} \\ \text{on the mixing as large as} &\sim 0.5. \end{split}$$

Large mixing- Custodial symmetry

$$-\mathcal{L}_{(X_T,Q)} = \frac{\lambda_{\psi}}{\sqrt{2}} \overline{(X_T \ Q)_L} \begin{pmatrix} H \\ \tilde{H} \end{pmatrix} t_R + M_{\psi} \overline{(X_T \ Q)_L} \begin{pmatrix} X_T \\ Q \end{pmatrix}_R + h.c.$$

