Discovery prospects for a light scalar in the NMSSM

Matías Rodríguez Vázquez with Ulrich Ellwanger LPT d'Orsay, Univ. Paris-Sud XI

GDR Terascale 2015

November 25, 2015

NMSSMTools

NMSSMTools is a Fortran code for NMSSM calculations. It takes as input a set of parameters given at the SUSY breaking or GUT or GMSB scale.

Computes

- Masses of the Higgs bosons and all sparticles.
- Couplings and decay widths of all Higgs bosons.
- Possible to connect with MicrOmegas for the computation of dark matter relic density as well as direct and indirect DM detection cross section.

Several NMSSM-like models

- General NMSSM.
- Z₃-invariant NMSSM.
- SUSY-breaking scenarios: minimal supergravity and gauge mediated SUSY breaking.
- CP-violating NMSSM: under construction.

NMSSMTools

Precision

- Fully diagrammatic calculation of Higgs masses at one-loop level + 2-loop corrections of $\mathcal{O}(\alpha_s(h_h^2+h_t^2))$ at zero external momentum.
- Also, MSSM-like 2-loop corrections at $\mathcal{O}(h_h^2 + h_t^2)^2$.
- Computation of the whole SUSY spectrum and BR at 1-loop level.

Phenomenological constraints

- B-physics observables (arXiv:0710.3714).
- Muon anomalous magnetic moment (arXiv:0806.0733).
- Bounds on the Higgs sector by LEP (arXiv:hep-ex/0602042).
- Measured values on the SM-like Higgs couplings reported by the experimental collaborations at LHC (arXiv:1306.2941, arXiv:1409.1588).

Supersymmetry and the Higgs mass

The hierarchy problem of the SM

In the SM, the Higgs mass receives radiative corrections proportional to a cut-off scale Λ^2 , which must be cancelled by a bare Higgs mass term. Due to this fact, the parameters must be set up to a precision of ~ 32 decimals or so to explain a light Higgs.

The SUSY solution

Supersymmetry offers a solution to the *hierarchy problem*: The Higgs mass is bounded at tree level and its radiative corrections are logarithmic. In the minimal SUSY extension of the SM (MSSM), the Higgs mass at tree level reads:

$$m_h \lesssim M_Z \cos 2\beta \xrightarrow{\tan \beta \gg 1} \sim 91 \text{ GeV}, \quad \text{where } \tan \beta = \frac{v_u}{v_d}$$
 (1)

But $h \approx 125 \text{ GeV}$!

Need large radiative corrections (i.e. large stops masses) to reach this value \Rightarrow new fine-tuning problem !

The NMSSM

The NMSSM consists in MSSM + singlet (super)field S. The CP-even Higgs sector is therefore enlarged and is composed by 3 states (instead of 2 as in the MSSM): H (heavy), h (identified with h^{125}) and h_s (light or heavy...).

New contributions to the Higgs mass

Due to the existence of the singlet, two mechanisms:

1 New tree level contribution to m_h ;

$$\mathcal{M}_{5,11}^2 = M_Z^2 \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta$$
 (2

where $\lambda \lesssim 0.8$ to avoid landau poles. This effect takes place mainly at small $tan\beta$.

 $\begin{tabular}{ll} \hline \textbf{9} & \mbox{If $m_{h_s} < 125$ GeV} \rightarrow \mbox{singlet-doublet mixing} \\ \mbox{can uplift m_h, up to 8 GeV beyond M_Z.} \\ \mbox{This effect takes place mainly at large $tan$$\beta$.} \label{eq:mainly}$

m_h uplift: Δ_{NMSSM}

Both effects are maximised in different regions of parameter space. We define a parameter, Δ_{NMSSM} in the following way:

$$\Delta_{\text{NMSSM}} = m_h^{\text{NMSSM}} - \max_{\tan \beta} m_h^{\text{MSSM}} \tag{3}$$

In this way, this parameter allows as to:

- Track how much we gain for m_h due to the existence of a singlet field S (i.e. w.r.t. the MSSM), due to mixing effects or the extra λ term.
- ② Assign a quantity to the "naturalness" of a point. The larger is Δ_{NMSSM} , the less radiative corrections one needs to reach 125 GeV.

Scanning the parameter space

Using NMSSMTools, we perform a scan in a vast region of parameter space.

The scan

- We scan over $10^{-3} \le \lambda \le 0.8$ and $1 \le \tan \beta \le 40$, in order to cover all the regions where the two mass shifting effects can be enhanced.
- We require light stops, 500 GeV ≤ $m_{\tilde{t}_{1,2}}$ ≤ 1.1 TeV, and also a relatively small value for the stop mixing parameter, −1 TeV ≤ A_t ≤ 1 TeV, to avoid fine-tuned points.
- **9** We require one of the higgses, h, to resemble the one found at CERN, and the mostly singlet like Higgs, h_s , to be lighter than h, i.e. $h_s \le 125$ GeV.

Phenomenological constraints applied

• All LEP constraints and LHC results in Higgs physics (by default in NMSSMTools)

Results: natural regions

For each point of the scan, its value of Δ_{NMSSM} has been computed.

- **1** Low $\lambda/\text{large tan }\beta$: Δ_{NMSSM} from mixing.
- 2 Large $\lambda/\text{low tan }\beta$: Δ_{NMSSM} from extra λ term.

Results: the diphoton channel

Present and future searches for h_s in the diphoton channel

Figure : In red, the small λ island where the mixing effect is dominant for the uplift of h. In gray the large λ region, with $\Delta_{\rm NMSSM} > 12$ practically everywhere, which is already being partially tested at the LHC. Left: current limits on $h_{\rm s} \to \gamma \gamma$. Right: Expected values for the diphoton cross section at Run II (excluded points are removed).

- Large λ region: Already being tested (RUN I)!
- ullet Small λ region: To be completely covered soon (RUN II)! Recall: Consistent with small excesses reported by LEP and CMS at 98 GeV.

Results: Correlations between h and h_s

Figure : Left: Correlation in the diphoton signal strengths of the light scalars. Right: diphoton signal strength for h_s versus the coupling to vector bosons of the mostly SM boson.

- Projected 1σ sensitivities on $\mu_{h^{125}}^{\gamma\gamma}$ for RUN II $,\Delta\mu_{h^{125}}^{\gamma\gamma}$ (300 fb $^{-1}$) \sim 0.13, $\Delta\mu_{h^{125}}^{\gamma\gamma}$ (3000 fb $^{-1}$) \sim 0.09 \Rightarrow precise measurements of $\mu_{h}^{\gamma\gamma}$ could exclude the small λ region.
- Any excess in $\mu_h^{\gamma\gamma}$ makes h_s practically invisible in $\gamma\gamma$.
- Projected 1σ sensitivities: $\Delta \kappa_V(h)(300 \text{ fb}^{-1}) \sim 0.059$, $\Delta \kappa_V(h)(3000 \text{ fb}^{-1}) \sim 0.037$

Conclusions

- Run II will be sensitive to the NMSSM natural regions featuring a lighter singlet-like state.
- Measurements of signal strengths and couplings of h^{125} together with direct searches for the additional lighter singlet-like state h_s in the diphoton channel can test substantial regions of the natural NMSSM parameter space.
- Large mixing effects as responsible for $m_h = 125$ GeV will be covered IF
 - $\kappa_V(h^{125}) \lesssim 0.93$ can be excluded, or
 - $\mu_{h_{\rm s}}^{\gamma\gamma}\gtrsim 0.85$ can be excluded .
 - ⇒ complementarity!

Thanks for your attention!

Conclusions

- Run II will be sensitive to the NMSSM natural regions featuring a lighter singlet-like state.
- Measurements of signal strengths and couplings of h^{125} together with direct searches for the additional lighter singlet-like state h_s in the diphoton channel can test substantial regions of the natural NMSSM parameter space.
- Large mixing effects as responsible for $m_h = 125$ GeV will be covered IF
 - $\kappa_V(h^{125}) \lesssim 0.93$ can be excluded, or
 - $\mu_{h_{\rm s}}^{\gamma\gamma}\gtrsim 0.85$ can be excluded .
 - ⇒ complementarity!

Thanks for your attention!

BACKUP

CP-even Higgs mass matrix

The mass matrix $\mathcal{M}_S'^2$ in the basis (h', H', S_r) reads:

$$\mathcal{M}_{5,11}^{\prime 2} = M_Z^2 \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta + \sin^2 \beta \Delta_{\text{rad}}$$
 (4)

$$\mathcal{M}_{5,12}^{\prime 2} = \frac{1}{2} \sin 2\beta \cos 2\beta \left(M_Z^2 - \lambda^2 M_Z^2 \right) - \frac{\sin 2\beta}{2} \Delta_{\text{rad}},$$
 (5)

$$\mathcal{M}_{5,13}^{\prime 2} = \lambda \nu \left(2\mu - \Lambda \sin 2\beta \right) \tag{6}$$

$$\mathcal{M}_{5,22}^{\prime 2} = M_A^2 + (M_Z^2 - \lambda^2 v^2) \sin^2(2\beta) + \cos^2\beta \Delta_{\text{rad}}$$
 (7)

$$\mathcal{M}_{5,23}^{\prime 2} = \lambda \nu \Lambda \cos 2\beta \tag{8}$$

$$\mathcal{M}_{5,33}^{\prime 2} = \lambda^2 v^2 \sin 2\beta \left(\frac{M_A^2 \sin 2\beta}{4\mu^2} - \frac{\kappa}{2\lambda} \right) + \frac{\kappa \mu A_\kappa}{\lambda} + \frac{4\kappa^2 \mu^2}{\lambda^2}$$
 (9)

where we have defined $\Lambda = A_{\lambda} + 2\kappa s$.

Production and BRs of the singlet

