Discovery prospects for a light scalar in the NMSSM

Matías Rodríguez Vázquez with
Ulrich Ellwanger
LPT d'Orsay, Univ. Paris-Sud XI

GDR Terascale 2015

November 25, 2015

NMSSMTools

NMSSMTools is a Fortran code for NMSSM calculations. It takes as input a set of parameters given at the SUSY breaking or GUT or GMSB scale.

Computes

- Masses of the Higgs bosons and all sparticles.
- Couplings and decay widths of all Higgs bosons.
- Possible to connect with MicrOmegas for the computation of dark matter relic density as well as direct and indirect DM detection cross section.

Several NMSSM-like models

- General NMSSM.
- \mathbb{Z}_{3}-invariant NMSSM.
- SUSY-breaking scenarios: minimal supergravity and gauge mediated SUSY breaking.
- CP-violating NMSSM: under construction.

NMSSMTools

Precision

- Fully diagrammatic calculation of Higgs masses at one-loop level + 2-loop corrections of $\mathcal{O}\left(\alpha_{s}\left(h_{b}^{2}+h_{t}^{2}\right)\right)$ at zero external momentum.
- Also, MSSM-like 2-loop corrections at $\mathcal{O}\left(h_{b}^{2}+h_{t}^{2}\right)^{2}$.
- Computation of the whole SUSY spectrum and BR at 1-loop level.

Phenomenological constraints

- B-physics observables (arXiv:0710.3714).
- Muon anomalous magnetic moment (arXiv:0806.0733).
- Bounds on the Higgs sector by LEP (arXiv:hep-ex/0602042).
- Measured values on the SM-like Higgs couplings reported by the experimental collaborations at LHC (arXiv:1306.2941, arXiv:1409.1588).

Supersymmetry and the Higgs mass

The hierarchy problem of the SM

In the SM, the Higgs mass receives radiative corrections proportional to a cut-off scale Λ^{2}, which must be cancelled by a bare Higgs mass term. Due to this fact, the parameters must be set up to a precision of ~ 32 decimals or so to explain a light Higgs.

The SUSY solution

Supersymmetry offers a solution to the hierarchy problem: The Higgs mass is bounded at tree level and its radiative corrections are logarithmic. In the minimal SUSY extension of the SM (MSSM), the Higgs mass at tree level reads:

$$
\begin{equation*}
m_{h} \lesssim M_{Z} \cos 2 \beta \xrightarrow{\tan \beta \gg 1} \sim 91 \mathrm{GeV}, \quad \text { where } \tan \beta=\frac{v_{u}}{v_{d}} \tag{1}
\end{equation*}
$$

But $h \approx 125 \mathrm{GeV}$!

Need large radiative corrections (i.e. large stops masses) to reach this value \Rightarrow new fine-tuning problem !

The NMSSM

The NMSSM consists in MSSM + singlet (super)field S. The CP-even Higgs sector is therefore enlarged and is composed by 3 states (instead of 2 as in the MSSM): H (heavy), h (identified with h^{125}) and h_{s} (light or heavy...).

New contributions to the Higgs mass
Due to the existence of the singlet, two mechanisms:
(1) New tree level contribution to m_{h};

$$
\begin{equation*}
\mathcal{M}_{S, 11}^{2}=M_{Z}^{2} \cos ^{2} 2 \beta+\lambda^{2} v^{2} \sin ^{2} 2 \beta \tag{2}
\end{equation*}
$$

where $\lambda \lesssim 0.8$ to avoid landau poles. This effect takes place mainly at small $\tan \beta$.
(2) If $m_{h_{s}}<125 \mathrm{GeV} \rightarrow$ singlet-doublet mixing can uplift m_{h}, up to 8 GeV beyond M_{Z}. This effect takes place mainly at large $\tan \beta$.

Both effects are maximised in different regions of parameter space. We define a parameter, $\Delta_{\text {NMSSM }}$ in the following way:

$$
\begin{equation*}
\Delta_{\mathrm{NMSSM}}=m_{h}^{\mathrm{NMSSM}}-\max _{\tan \beta} m_{h}^{\mathrm{MSSM}} \tag{3}
\end{equation*}
$$

In this way, this parameter allows as to:
(1) Track how much we gain for m_{h} due to the existence of a singlet field S (i.e. w.r.t. the MSSM), due to mixing effects or the extra λ term.
(2) Assign a quantity to the "naturalness" of a point. The larger is $\Delta_{\text {NMSSM }}$, the less radiative corrections one needs to reach 125 GeV .

Scanning the parameter space

Using NMSSMTools, we perform a scan in a vast region of parameter space.

The scan

(1) We scan over $10^{-3} \leq \lambda \leq 0.8$ and $1 \leq \tan \beta \leq 40$, in order to cover all the regions where the two mass shifting effects can be enhanced.
(2) We require light stops, $500 \mathrm{GeV} \lesssim m_{\tilde{t}_{1,2}} \lesssim 1.1 \mathrm{TeV}$, and also a relatively small value for the stop mixing parameter, $-1 \mathrm{TeV} \leq A_{t} \leq 1 \mathrm{TeV}$, to avoid fine-tuned points.
(3) We require one of the higgses, h, to resemble the one found at CERN, and the mostly singlet like Higgs, h_{s}, to be lighter than h, i.e. $h_{s} \leq 125 \mathrm{GeV}$.

Phenomenological constraints applied

- All LEP constraints and LHC results in Higgs physics (by default in NMSSMTools)

Results: natural regions

For each point of the scan, its value of $\Delta_{\text {NMSSM }}$ has been computed.

(1) Low $\lambda /$ large $\tan \beta: \Delta_{\text {NMSSM }}$ from mixing.
(2) Large $\lambda /$ low $\tan \beta: \Delta_{\text {NMSSM }}$ from extra λ term.

Results: the diphoton channel

Present and future searches for h_{s} in the diphoton channel

Figure: In red, the small λ island where the mixing effect is dominant for the uplift of h. In gray the large λ region, with $\Delta_{\text {NMSSM }}>12$ practically everywhere, which is already being partially tested at the LHC. Left: current limits on $h_{s} \rightarrow \gamma \gamma$. Right: Expected values for the diphoton cross section at Run II (excluded points are removed).

- Large λ region: Already being tested (RUN I)!
- Small λ region: To be completely covered soon (RUN II)! Recall: Consistent with small excesses reported by LEP and CMS at 98 GeV .

Results: Correlations between h and h_{s}

Figure : Left: Correlation in the diphoton signal strengths of the light scalars. Right: diphoton signal strength for h_{s} versus the coupling to vector bosons of the mostly SM boson.

- Projected 1σ sensitivities on $\mu_{h^{125}}^{\gamma \gamma}$ for RUN II , $\Delta \mu_{h^{125}}^{\gamma \gamma}\left(300 \mathrm{fb}^{-1}\right) \sim 0.13$, $\Delta \mu_{h^{125}}^{\gamma \gamma}\left(3000 \mathrm{fb}^{-1}\right) \sim 0.09 \Rightarrow$ precise measurements of $\mu_{h}^{\gamma \gamma}$ could exclude the small λ region.
- Any excess in $\mu_{h}^{\gamma \gamma}$ makes h_{s} practically invisible in $\gamma \gamma$.
- Projected 1σ sensitivities: $\Delta \kappa V(h)\left(300 \mathrm{fb}^{-1}\right) \sim 0.059, \Delta \kappa_{V}(h)\left(3000 \mathrm{fb}^{-1}\right) \sim 0.037$

Conclusions

- Run II will be sensitive to the NMSSM natural regions featuring a lighter singlet-like state.
- Measurements of signal strengths and couplings of h^{125} together with direct searches for the additional lighter singlet-like state h_{s} in the diphoton channel can test substantial regions of the natural NMSSM parameter space.
- Large mixing effects as responsible for $m_{h}=125 \mathrm{GeV}$ will be covered IF
- $\kappa_{V}\left(h^{125}\right) \lesssim 0.93$ can be excluded, or
- $\mu_{h_{s}}^{\gamma \gamma} \gtrsim 0.85$ can be excluded .
\Rightarrow complementarity!

Conclusions

- Run II will be sensitive to the NMSSM natural regions featuring a lighter singlet-like state.
- Measurements of signal strengths and couplings of h^{125} together with direct searches for the additional lighter singlet-like state h_{s} in the diphoton channel can test substantial regions of the natural NMSSM parameter space.
- Large mixing effects as responsible for $m_{h}=125 \mathrm{GeV}$ will be covered IF
- $\kappa_{V}\left(h^{125}\right) \lesssim 0.93$ can be excluded, or
- $\mu_{h_{s}}^{\gamma \gamma} \gtrsim 0.85$ can be excluded.
\Rightarrow complementarity!

Thanks for your attention!

BACKUP

CP-even Higgs mass matrix

The mass matrix $\mathcal{M}_{S}^{\prime 2}$ in the basis $\left(h^{\prime}, H^{\prime}, S_{r}\right)$ reads:

$$
\begin{align*}
\mathcal{M}_{S, 11}^{\prime 2} & =M_{Z}^{2} \cos ^{2} 2 \beta+\lambda^{2} v^{2} \sin ^{2} 2 \beta+\sin ^{2} \beta \Delta_{\mathrm{rad}} \tag{4}\\
\mathcal{M}_{S, 12}^{\prime 2} & =\frac{1}{2} \sin 2 \beta \cos 2 \beta\left(M_{Z}^{2}-\lambda^{2} M_{Z}^{2}\right)-\frac{\sin 2 \beta}{2} \Delta_{\mathrm{rad}} \tag{5}\\
\mathcal{M}_{S, 13}^{\prime 2} & =\lambda v(2 \mu-\Lambda \sin 2 \beta) \tag{6}\\
\mathcal{M}_{S, 22}^{\prime 2} & =M_{A}^{2}+\left(M_{Z}^{2}-\lambda^{2} v^{2}\right) \sin ^{2}(2 \beta)+\cos ^{2} \beta \Delta_{\mathrm{rad}} \tag{7}\\
\mathcal{M}_{S, 23}^{\prime 2} & =\lambda v \Lambda \cos 2 \beta \tag{8}\\
\mathcal{M}_{S, 33}^{\prime 2} & =\lambda^{2} v^{2} \sin 2 \beta\left(\frac{M_{A}^{2} \sin 2 \beta}{4 \mu^{2}}-\frac{\kappa}{2 \lambda}\right)+\frac{\kappa \mu A_{\kappa}}{\lambda}+\frac{4 \kappa^{2} \mu^{2}}{\lambda^{2}} \tag{9}
\end{align*}
$$

where we have defined $\Lambda=A_{\lambda}+2 \kappa s$.

Production and BRs of the singlet

