Combination single top + $t\bar{t}$ $tH \rightarrow 1\ell 3b$

Lorenzo Basso

Lorenzo Basso (IPHC)

June 24, 2015 1 / 25

Optimisation

• LEPTONS: $|\eta| < 2.5(2.4)$ for $e/\mu,$ then:

- Tight: $p_{\ell}^T > 30$ GeV, ISO: cone04, $I_{rel} < 0.12(0.10) \ e/\mu$
- Loose: $10 < p_{\ell}^T < 30$ GeV, ISO: cone04, $I_{rel} < 0.20$
- JETS: $p_j^T > 40 \text{ GeV}, |\eta| < 2.4, 1/\text{EEoverHE} > 0.15$

Selections:

- 2 $M^T(\ell\nu) > 50 \text{ GeV}$
- 3 $N_J \ge 3$ (J =light and b jets)

 $N_b \equiv 3 \text{ (CSVM)}$

Here, MVA or Cut&Count with

- 80 GeV < $|M(bb) M_H| < 205$ GeV
- loose top reco: $M^T(b \, \ell \nu) < 230 \text{ GeV}$

< 注→ < 注→ -

Higgs and top reco: MVA

 $\overline{M_H} - \overline{M_{TOP}}$

 M_H

 M_{TOP}

Lorenzo Basso (IPHC)

Cut-and-count

Cut	Sum Bg	κ _{hct}	κ_{hut}	ttbar κ_{hct}	ttbar κ_{hut}
no cuts	$(18.62 \pm 0.03) 10^9$	21261 ± 21	164242 ± 57	133579 ± 46	133528 ± 45
$\#\ell \equiv 1, 0$ loose	$(5858 \pm 1) 10^6$	2763 ± 8	$\textbf{21995} \pm \textbf{20}$	61009 ± 31	60975 ± 30
$M^{T}(\ell\nu) > 50$	$(5573 \pm 1) 10^6$	1832 ± 6	14434 ± 16	41456 ± 25	41432 ± 25
$\#j \ge 3$	$(5262 \pm 7) 10^3$	575 ± 4	3610 ± 8	$\textbf{20553} \pm \textbf{17}$	20575 ± 17
$\#b \equiv 3$	$\textbf{77688} \pm \textbf{389}$	112 ± 2	628 ± 3	2414 ± 6	2422 ± 6
80 < M(bb) < 205	70581 ± 368	109 ± 2	601 ± 3	2341 ± 6	2348 ± 6
$80 < M^T(b\ell\nu) < 230$	64942 ± 352	103 ± 1	560 ± 3	$\textbf{2225}\pm\textbf{6}$	$\textbf{2231}\pm\textbf{6}$

Table: Signal (ttbar to be rescaled by 2/3).

Cut	Sum Bg	T+jets	THq	TT+jets	W+jets
no cuts	$(18622 \pm 0.03) 10^6$	$(28.11 \pm 0.02) 10^6$	17526 ± 6	$(32322 \pm 7) 10^3$	$(18562 \pm 3) 10^6$
$\#\ell \equiv 1, 0$ loose	$(5858 \pm 1) 10^{6}$	$(3162 \pm 5.2) 10^3$	6074 ± 3	$(9245 \pm 4) 10^3$	$(5845 \pm 1) 10^6$
$M^{T}(\ell\nu) > 50$	$(5573 \pm 1) 10^6$	$(2225 \pm 4) 10^3$	4043 ± 3	$(5966 \pm 3) 10^3$	$(5565 \pm 1) 10^6$
$\#j \ge 3$	$(5262 \pm 7) 10^3$	$(255 \pm 1) 10^3$	1664 ± 2	$(3256 \pm 2) 10^3$	$(1749 \pm 7) 10^3$
$\#b \equiv 3$	77688 ± 389	1138 ± 113	401 ± 1	$\textbf{75883} \pm \textbf{371}$	266 ± 34
80 < M(bb) < 205	70581 ± 368	802 ± 93	337 ± 1	69231 ± 355	210 ± 30
$80 < M^T(b\ell\nu) < 230$	64942 ± 352	651 ± 84	270 ± 1	63866 ± 341	154 ± 26

Table: Background

3 × 1

Cut	κ_{hct}	κ_{hut}	ttbar κ_{hct}	ttbar κ_{hut}	comb κ_{hct}	comb κ_{hut}
no cuts	0.156	1.204	0.979	0.978	1.135	2.182
$\#\ell \equiv 1$	0.036	0.287	0.797	0.797	0.833	1.084
$M^T(\ell\nu) > 50$	0.025	0.193	0.555	0.555	0.580	0.748
$\#j \ge 3$	0.251	1.573	8.942	8.952	9.192	10.519
$\#b \equiv 3$	0.402	2.246	8.528	8.556	8.918	10.734
80 < M(bb) < 205	0.408	2.254	8.670	8.696	9.065	10.878
$80 < M^T(b\ell\nu) < 230$	0.403	2.188	8.584	8.606	8.973	10.722

 $t\bar{t}h$ -background still missing: $\mathcal{O}(1\%)$

MVA – BDT

- training on sum of signals (naive combination)
- one training each for κ_{hut} and κ_{hct}
- compare κ_{hut} vs. κ_{hct} training by applying reader on sum of signals
- rescaled tt
 -signals by 2/3 waiting for new signal "with taus"
- tried various asymmetry variables: $Q_{\ell}, Q_{\ell} \times p_{\ell}^{T}, Q_{\ell} \times |\eta_{\ell}|$: no difference

Variables for κ_{hut}

Lorenzo Basso (IPHC)

Variables for $\overline{\kappa_{hut}}$

Filled after the $\#b \equiv 3$ cut.

11 Variables with relative importance:

Variable	Importance
H_T	1.9410^{-1}
M(H)	1.4810^{-1}
$p^T(H)$	1.1310^{-1}
$p^T(top)$	1.1310^{-1}
Q_ℓ	1.0610^{-1}
H_T^{rel}	7.2110^{-2}
$p^T(b_2)$	5.9010^{-2}
$M(\ell b)$	5.7610^{-2}
$M(jb_2)$	5.7310^{-2}
$\eta(H)$	4.7610^{-2}
M(top)	3.4310^{-2}

where
$$H_T^{rel} \equiv (p^T(H) + p^T(top))/H_T$$

κ_{hut} : overtraining

Some large correlations, but if removed BDT loses discriminating power

Variables for κ_{hct}

▶ ট্র •⁄) ৭. ে June 24, 2015 12 / 25

Lorenzo Basso (IPHC)

Variables for κ_{hct}

Filled after the $\#b \equiv 3$ cut.

9 Variables with relative importance:

Variable	Importance
H_T	2.4210^{-1}
M(H)	1.8210^{-1}
$p^T(top)$	1.3510^{-1}
$p^T(H)$	1.0410^{-1}
$M(\ell b)$	8.6310^{-2}
$M(jb_2)$	8.6010^{-2}
H_T^{rel}	6.0510^{-2}
$p^T(b_2)$	4.9410^{-2}
M(top)	4.4710^{-2}

κ_{hct} : overtraining

Some large correlations, but if removed BDT loses all discriminating power

BDT output

 κ_{hut}

 κ_{hct}

• E •

MVA: reading of sum of signals

MVA: 2D limits

 $\langle \Box \rangle \langle \Box \rangle$

• E •

MVA: 1D indep limits

single-top-enriched selection: $\#j \equiv 3$

Cut	Sum Bg	κ _{hct}	κ _{hut}	ttbar κ_{hct}	ttbar κ_{hut}
no cuts	$(18.62 \pm 0.03) 10^9$	21261 ± 21	164242 ± 57	133579 ± 46	133528 ± 45
$\#\ell \equiv 1, 0$ loose	$(5858 \pm 1) 10^6$	2763 ± 8	21995 ± 20	61009 ± 31	60975 ± 30
$M^{T}(\ell\nu) > 50$	$(5573 \pm 1) 10^6$	1832 ± 6	14434 ± 16	41456 ± 25	41432 ± 25
$\#j \equiv 3$	$(382 \pm 7) 10^3$	434 ± 3	2728 ± 7	12873 ± 14	12887 ± 14
$\#b \equiv 3$	$\textbf{28423} \pm \textbf{245}$	78 ± 1	429 ± 3	1060 ± 4	1065 ± 4
80 < M(bb) < 205	$\textbf{26605} \pm \textbf{234}$	76 ± 1	414 ± 3	1031 ± 4	1038 ± 4
$80 < M^T(b\ell\nu) < 230$	$\textbf{24943} \pm \textbf{224}$	73 ± 1	389 ± 3	981 ± 4	989 ± 4

Table: Signal (ttbar to be rescaled by 2/3).

Cut	Sum Bg	T+jets	THq	TT+jets	W+jets
no cuts	$(18622 \pm 0.03) 10^6$	$(28.11 \pm 0.02) 10^6$	17526 ± 6	$(32322 \pm 7) 10^3$	$(18562 \pm 3) 10^6$
$\#\ell \equiv 1, 0$ loose	$(5858 \pm 1) 10^6$	$(3162 \pm 5.2) 10^3$	6074 ± 3	$(9245 \pm 4) 10^3$	$(5845 \pm 1) 10^6$
$M^{T}(\ell\nu) > 50$	$(5573 \pm 1) 10^6$	$(2225 \pm 4) 10^3$	4043 ± 3	$(5966 \pm 3) 10^3$	$(5565 \pm 1) 10^6$
$\#j \equiv 3$	$(382 \pm 7) 10^3$	$(205 \pm 1) 10^3$	1046 ± 1	$(1868 \pm 2) 10^3$	$(1744 \pm 7) 10^3$
$\#b \equiv 3$	$\textbf{28423} \pm \textbf{245}$	813 ± 97	211 ± 1	$\textbf{27103} \pm \textbf{222}$	296 ± 36
80 < M(bb) < 205	26605 ± 234	44 ± 87	180 ± 1	25558 ± 215	223 ± 31
$80 < M^T(b\ell\nu) < 230$	24943 ± 224	491 ± 75	148 ± 1	24107 ± 209	197 ± 29

Table: Background

< ロ > < 同 > < 臣 > < 臣

Cut	κ_{hct}	κ_{hut}	ttbar κ_{hct}	ttbar κ_{hut}	comb κ_{hct}	comb κ_{hut}
no cuts	0.156	1.204	0.979	0.978	1.135	2.182
$\#\ell \equiv 1$	0.036	0.287	0.797	0.797	0.833	1.084
$M^T(\ell\nu) > 50$	0.025	0.193	0.555	0.555	0.580	0.748
$\#j \equiv 3$	0.222	1.396	6.576	6.583	6.798	7.974
$\#b \equiv 3$	0.460	2.523	6.175	6.205	6.619	8.638
80 < M(bb) < 205	0.465	2.516	6.204	6.246	6.652	8.669
$80 < M^T(b\ell\nu) < 230$	0.459	2.443	6.092	6.142	6.534	8.493

MVA: no improvement. For combination use only cut-and-count.

To compare with inclusive analysis

- no need for separate training for different couplings
- tiny improvement with BDT for inclusive sample
- NO improvement with BDT for single-top enriched sample
- ...final numbers awaiting for new TT-signal (almost there!)

Backup slides

Lorenzo Basso (IPHC)

June 24, 2015 23 / 25

 $\langle \Box \rangle \langle \Box \rangle$

Number of b-jets

PT of Higgs

