

Vrije Universiteit Brussel

A search for FCNC in top quark decays with a final state of 1 lepton + 3 b-jets

Kevin Deroover Vrije Universiteit Brussel 17/06/2015

Baseline selection

(1) = 1 lepton (e/ μ , P_T > 30 GeV, $|\eta| < 2.5$ (2.4))

+ veto on loose leptons (10 GeV) < P_T < 30 GeV)

- (2) $M_{T}(lep,MET) \ge 50 \text{ GeV}$
- (3) \geq 4 jets (P_T > 40 GeV, |η| < 2.4)
- (4) \geq 3 CSV Medium^(*) b-tagged jets

		Initial	1 lep	M _⊤ (lep,MET) ≥ 50	Nb Jets ≥ 4	Nb B jets ≥ 3 (final)
Bkg	tt + jets	3.84 10 ⁷	1.19 10 ⁷	7.53 10 ⁶	1.48 10 ⁶	8.23 104
	ttH	1.44 10 ⁴	4.77 10 ³	3.03 10 ³	2.13 10 ³	1.11 10 ³
	W + jets	8.18 10 ⁷	1.94 10 ⁷	1.34 10 ⁷	5.57 10 ⁵	462
	tHq	1.84 10 ⁴	6.01 10 ³	3.86 10 ³	560	327
	t + jets	2.78 10 ⁷	3.16 10 ⁶	2.2 10 ⁶	3.23 10 ⁴	99
Signal	tcH-ttbar	4.23 10 ⁵	8.13 10 ⁴	4.92 10 ⁴	1.47 10 ⁴	5.6 10 ³
	tcH-singTop	2.14 10 ⁴	2.83 10 ³	1.75 10 ³	132	53
	S/√(S+B)	////	////	////	10.14	18.81
	tuH-ttbar	4.37 10 ⁵	8.25 104	5.75 10 ⁴	1.13 104	3.26 10 ³
	tuH-singTop	1.72 10 ⁵	2.22 10 ⁴	1.4 10 ⁴	850	317
	S/√(S+B)	////	////	////	8.32	12.04

(*) ~1% non-B efficiency and ~70% B efficiency

Systematic uncertainties reduce significance below 1

- Taking 10% of systematic uncertainty into account on tr cross section: $\frac{S}{\sqrt{S+B+(0.1 \times B_{t\bar{t}})^2}} = 0.67 \text{ (tcH)}$
- Two ways to increase the significance:

1) Find discriminating variable(s) to perform a template fit

- Variables related to b-jets coming from H (kinematic resolutions of jets are not so great)
- Reconstruction mechanisms to select correct b-jets are not so efficient

2) Revisit selection cuts according to $\frac{S}{\sqrt{S+B+(0.1 \times B_{t\bar{t}})^2}}$

Reconstruction mechanism

(*) Denominator = number of events after BL selection Only measured on ttbar signal samples

Reconstruction mechanism

MVA – input variables

Correlation Matrix (signal)

6

Normalized distributions input variables (1)

(blue: Signal, red: Background)

Normalized distributions input variables (2)

(blue: Signal, red: Background)

1) MVA (BDT) not distinctive

TMVA overtraining check for classifier: BDT

(1/N) dN / dx

Kinematic information not useful \rightarrow Discrimination power to be looked for in b-tagging information (# b-tagged jets, b-tag discriminator)

Not accessible in our pheno study

1) # b-jets not discriminating enough to perform reasonable template fit

Conclusion: Performing **template fit** to constrain influence of systematic uncertainties **does not help**

2) Revision of selection cuts gets significance up to 4.96

- Optimize selection according to
 - = 1 lepton (e/μ , $P_T > 30 \text{ GeV}$)
 - M_T(lep,MET) \ge 50 GeV
 - $\geq 4 \text{ jets } (P_T > 40 \text{ GeV})$
 - \geq 4 CSV Medium b-tagged jets (tcH)
 - ≥ 3 CSV Tight^(*) b-tagged jets (tuH)

 $\underbrace{\sqrt{S+B+(0.1\times B_{t\bar{t}})^2}}_{S}$

2.70 (tcH) 0.98 (tuH)

Conclusion

- A significance of **2.7 (1)** can be reached with simple cut-and-count methods. Depending on the handle on systematic uncertainties, this can even go up to 18 (12)

BR & coupling-scan ~Caroline's tool~

brhut_sig2 0.0009275 brhct_sig2 0.0006125

brhut_sig3 0.0013825 brhct_sig3 0.0008925

brhut_sig5 0.0023275 brhct_sig5 0.0014875 khut_sig2 0.0822844 khct_sig2 0.0646969

khut_sig3 0.0998719 khct_sig3 0.0797719

khut_sig5 0.128766 khct_sig5 0.102384

Conclusion

- The 1L3B channel shows promising significances for FCNH top decays applying simple cut-and-count techniques
- MVA and template fitting not useful due to lack of discriminating power in kinematic variables
- Need to turn to heavy flavour tagging information for CMS analysis
- Pheno study finished \rightarrow Turn to CMS study (TopTree framework)

Backup

	initial	== 1 lepton	$M_T(lep,MET) > 50 \text{ GeV}$	≥ 4 jets	≥ 3 CSVM jets
TT+jets	$3.84e{+}07 \pm 9.82e{+}03$	$1.19\mathrm{e}{+07}\pm5.59\mathrm{e}{+03}$	$7.53\mathrm{e}{+06} \pm 4.43\mathrm{e}{+03}$	$1.48e+06 \pm 2.02e+03$	$8.23e{+}04 \pm 481$
TTH	$1.44e{+}04 \pm 13.9$	$4.77\mathrm{e}{+}03\pm7.97$	$3.03e{+}03 \pm 6.34$	$2.13e{+}03 \pm 5.46$	$1.11\mathrm{e}{+03}\pm3.94$
W+jets	$8.18e+07 \pm 1.77e+04$	$1.94\mathrm{e}{+07}\pm9.04\mathrm{e}{+03}$	$1.34e{+}07 \pm 7.4e{+}03$	$5.57e+05 \pm 1.67e+03$	462 ± 48
tHq	$1.84e{+}04 \pm 8.11$	$6.01\mathrm{e}{+03} \pm 4.58$	$3.86e{+}03 \pm 3.65$	560 ± 1.39	327 ± 1.06
T+jets	$2.78e+07 \pm 2.47e+04$	$3.16e{+}06 \pm 7.69e{+}03$	$2.2\mathrm{e}{+06}\pm6.49\mathrm{e}{+03}$	$3.23e{+}04 \pm 331$	99.4 ± 10.6
ZToLL	$3.27e{+}07 \pm 1.5e{+}04$	$3.08e+06 \pm 3.46e+03$	$7.72\mathrm{e}{+}05 \pm 1.39\mathrm{e}{+}03$	$5.15e{+}04 \pm 243$	76.9 ± 9.24
TT+V+jets	$1.41\mathrm{e}{+04} \pm 25.7$	$3.36\mathrm{e}{+03}\pm12.3$	$2.08e{+}03 \pm 9.78$	724 ± 6.06	39.8 ± 1.43
VV+jets	$9.17e+05 \pm 1.07e+03$	$1.28e{+}05 \pm 400$	$9.08e{+}04 \pm 338$	$4.59e{+}03 \pm 76$	27.7 ± 5.9
κ_{hct} TTbar	$4.23e{+}05 \pm 210$	$8.13\mathrm{e}{+}04\pm90.7$	$4.92e{+}04 \pm 70.5$	$1.47e{+}04 \pm 38.6$	$5.6e{+}03 \pm 23.8$
κ_{hct} SingleTop	$2.14e{+}04 \pm 27.6$	$2.83e{+}03 \pm 10$	$1.75e{+}03 \pm 7.89$	132 ± 2.17	52.5 ± 1.37
κ_{hut} TTbar	$4.37e{+}05 \pm 637$	$8.25e{+}04 \pm 277$	$5.57 \mathrm{e}{+04} \pm 228$	$1.13e{+}04 \pm 103$	$3.26e{+}03 \pm 55.1$
κ_{hut} SingleTop	$1.72e{+}05 \pm 206$	$2.22e{+}04 \pm 74$	$1.4e{+}04 \pm 58.8$	850 ± 14.5	317 ± 8.84

M(bb) vs M(lep,b) at MC truth level

Best case scenario: 38% of signal gives distinguishable mass distributions. Remaining 62% will look like semileptonic $t\bar{t}$

M(bb) vs M(lep,b) - signal

true-false

false-true

BR scan

BR (t \rightarrow cH) vs BR (t \rightarrow uH) significance

