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Gravitational redshift prediction

The flow of time, or the rate of a clock when compared to coordinate time,
depends on the velocity of the clock and on the space-time metric (which
depends on the mass/energy distribution). In the weak-field approximation:

AT
T_f C

Af Up—Upy v%—v% 4
— = 7 T "oz +O(c™ )

m U and v known - Af prediction
= Clock syntonization

® U, v and Af known
= Gravitational redshift test

m Af known — AW prediction (W=U+v2/2)
= Chronometric geodesy
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|. Progress in time & frequency metrology

. A brief introduction to chronometric
geodesy and some ongoing projects

lll. Proposal for a (new) test of the
gravitational redshift
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Progress in time and frequency
metrology

Optical clock
(Strontium)
in SYRTE
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What is an atomic clock ?

— Deliver a signal with stable and universal frequency

ﬁwef — Ee — Ef

wW(t) = wer X (L +€+y(t))

¢ : fractional frequency offset

Accuracy: overall uncertainty on ¢
y(t) : fractional frequency
fluctuations

Stability: statistical properties of .. ction
y(t), characterized by the Allan

variance
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Accuracy
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Microwave clocks: 1016 accuracy (Fountains)

" In space: microwave clocks with at best 10-1* stability at present (GNSS)

Best performance of optical clocks to date:
®  Accuracy: Sr, 6.4x10-18 (JILA); Stability : Yb, 1.6x10-18 after 7 h averaging (NIST)

®  Research in highly accurate clocks is an active, innovative and competitive field
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m Best present satellite radio techniques
(GNSS, TWSTFT) reach about 1x10-15

frequency stability after 1 day averaging = 3
years averaging required to reach 1x10-18!!! -
and that is being very optimistic.

m Best present optical satellite link (T2L2)
reaches about 3x10-13 after 10 s averaging =
25 days averaging required to reach 1x10-18!!
- optimistic.

m ACES Microwave link is expected to reach
2x10-15 after 300 s averaging = 5 days to
reach 1x10-18 - optimistic.

! 2-3 order of magnitudes improvement
needed !

IEN-OP comparison with 3 techniques
(GPS code, GPS phase, TWSTFT)
(Bauch et al., Metrologia 2006)
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Long-distance clock comparisons: fibre optical links and the future

refimeve.fr gl ‘ ;
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Belgium
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to research
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Sz
® Clock frequency comparison — measure directly gravity potential
differences |

2

(y
U+ —
2

Chou et al, Science, 329 (2010)

33 cm height increase.

] 37+ 15 cm

5 10 15
Measurement number
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Isochronometric surface and equipotential

® An isochronometric surface is a surface where all clocks beat at the

same rate.
®m They are almost equivalent to equipotential surfaces of the gravity d
field (differences of the order of 2 mm) _T — cst
dt |

m Let t be the time given by a clock at infinity and at rest in the GCRS. Then the
reference isochronometric surface (TT) defined by IAU is: dr

Ezcstzl—l}g

where Lg = 6.969290134 x 1010 is a defining constant (IAU resolution B1.9, 2000)

m From this definition we get a reference equipotential

— variation of the geoid ~ 2 mm/y - 2*10*° in 10 years
— use of clocks to unify height systems




‘m As a proof-of-principle, one can determine (roughly) J, with two \‘ﬂ
clocks:
, ™
A Wg—-—W
A _Ws A L0, W=U+—
S C 2 > A: INRIM CsF1 (Turin, Italy)
anr IR B: SYRTE FO2 (Paris, France)
U=""2|1+22E (1-3sin(p)?)
r 272 P

Jy = (1.097 £0.016) x 10~

m Error of ~1.4% compare to best known
value

m However, ground clocks are sensitive to
higher order multipoles



Chronometric geodesy with ACES

® Measure “absolute” altitude of clocks (referenced to the space
clock)

® Measure ground-to-ground gravitational potential differences
up to 1 m2.s2 accuracy (10 cm, 10-17 relative frequency shift)
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A coordinated
programme of
optical clock
comparisons

EMRP

European Metrology Research Programme
P Programme of EURAMET

The EMRRP is jointly funded by the EMRP participating countries
within EURAMET and the European Union

( NPL

Yb* (E2)

Yb* (E2)
Yb* (E3)

U e (E3)
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Sr (laboratory)

Sr (transportable) /

INRIM

Local optical frequency comparisons using femtosecond combs

Frequency comparisons using transportable optical clocks

Optical frequency comparisons using broad bandwidth TWSTFT

Absolute frequency measurements
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m Determination of the static gravity potential at all clock locations

m Development of a refined European geoid model including new gravity observations
around all relevant clock sites (IFE)

m |nvestigation of time-variable components of the gravity potential, e.g. due to tides.

IR IS

\
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®m Aim: to demonstrate that optical clocks can be used to measure gravity N\ )
potential differences over medium-long baselines with high temporal
resolution. - -
Tunnel routier de Fréjus P,Ormeuld% F,ff’l“\s

FRANCE ITALIE

Puits de ventilation

Altitude T 268 m
Altitude 1228 m
LSM (Modane)
transportable strontium o o \ - -
lattice clock from PTB Distance O @ 6210m 12868 m
- ——-—-——- L. S
90 km optical fibre link
height ) .
difference transportable m Height difference ~ 1000
~1000 m femtosecond comb | 1.5 micron INRIM (Torino) . . .
fomNPL | transfer laser m — Gravitational redshift
ytterbium
lattice clock -~ ]. 0_13

2 .--@

m Target — resolution of tens
of cm in a few hours

frequency
comparison
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Chronometric geodesy for high resolution geopotential

m Collaboration between Syrte/Obs.Paris, LAREG/IGN and LKB

m Evaluating the contribution of optical clocks for the
determination of the geopotential at high spatial resolution

® Find the best locations points to put optical clocks to improve
the determination of the geopotential

m Evaluation of the possibility to replace many poor gravity data
with one accurate clock measurement
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Proposal for a test of the gravitational redshift
with Galileo satellites 5 and 6
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The story of Galileo 5 and 6

m Galileo satellites 5 and 6 were launched with a Soyuz rocket on 2
august 2014 on the wrong orbit due to a technical problem

® Launch failure was due to a temporary interruption of the joint
hydrazine propellant supply to the thrusters, caused by freezing of the
hydrazine, which resulted from the proximity of hydrazine and cold
helium feed lines.

® Last launch of Galileo satellites 9 and 10 occured on September 11th

European Space Agency

. |

Navigation solutions powered by Europe
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In-0Orhit Validation Galliea satelfites (k)
—  Uncorrected orbit of satellites 5 & 6

— Lorrected arbit of satellites 5 & b European Space Agency




t — > ¢ sin F'(t) + Cste

(1_3Gm> 2v/Gma

constant frequency bias eccentricity correction

® One need an accurate clock to measure the constant frequency
bias

® The eccentricity correction is a periodic term — use the stability
of the clock to “average” the random noise

® Limitations are due to mismodeled systematics effects
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R. Vessot et al., \

= Test of the redshift on a single parabola GRG 1979, PRL
= Continuous two-way microwave link between a 1980, AdSR
spaceborne hydrogen maser clock and ground 1989

hydrogen masers

= Frequency shift verified to 7107

® Gravitational redshift verified to 1.4*%10™* MTITUOE 10,000 &1
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Simulation of :
1. Galileo 5 and 6 orbits
2. Realistic onboard clock noise

3. Gravitational Redshit Signal (including a Local Position Invariance
violation, random noise and systematic effects)

Analysis of the simulated signal with two different methods :
1. Matched Filtering in the frequency domain

2. Linear Least-Square + Monte-Carlo in the time domain
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= Simple phenomenological model for LPI violation (C. Will, LRR 2014)

® Alpha is = 0 in GR

® GP-A limit : alpha < 1.4x10+
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Simulation of onboard clock noise

[E11

c
S GO1
S 1e-131 < 625
) ]
3 | \L\
- |
5 —_——
ks, \\\
= 1e—-141 P ——
= j \—-ﬁ

1e-15 — — —

100 1000 10000 100000

Integration Time (in s)

L. Prange et al., IAG
Potsdam
Proceedings, 2014,
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E11

Modified Allan Deviation

1e-15 —— s ————
100 1000 10000 100000
Integration Time (in s)
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Simulation of onboard clock noise

MDEYV of the
simulated clock
noise

® White noise ~5x10-
14 @ 1000s

m Flicker noise
~8x10-15

L. Prange et al., IAG
Potsdam
Proceedings, 2014,
accepted for

a a aVa



107 PSD of the simulated
clock noise
Main frequency of the 1 ™ White noise

_ looked for signal ~ ~4x1024
T o102} 2.3x10-5,Hz m Flicker noise
i ~4x102° @ 1 Hz
= ~2x1024¢ @ signal
E frequency

1075 ¢

107

107 107 1074 102

f (Hz)
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Statistical methods

Matched filtering method

Sensitivity is the inverse of the signal-to-noise (SNR) ratio p, which
is maximized with matched filtering

, _ [T IXNP

| X (f): Fourier transform of the (ideal) signal

df

Sn(f): PSD of the random noise

Linear least-square method

Find the minimum of the merit function y2 with respect to alpha
N

=) Lyt + €+ esys) — (Flasty) + A

1=1
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10 -3 T T

. o Galileo 5&6 Final Orbit (LSGQ)
= Galileo 5&6 Final Orbit (FFT)
T" +  Galileo 5&6 Initial Orbit (LSQ))

lu Galileo 5&6 Initial Orbit (FFT)
= Gravity Probe A
e

=
T'._J T
10 :
= +
b as

g
=

g

10° 10 10°

duration (day)

® The two very different methods agree on the sensitivity of the test

® We proved mathematically that o, = p

1

10°

®m The best actual limit Qi
grav. redshift (GP-A) is
reached after ~2 weeks
with Galileo 5

m After one year of
integration the
sensitivity is ~3x10-° -
a factor of 5 better
than GP-A, which was a
dedicated experiment
(expected sensitivity of
ACES-PHARAO is 2-
3x10-6)

® Problem : all systematic effects that mimic the gravitational redshift
signal will induce a bias in the estimation of alpha — fake violation of LPI
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Systematic effects

i. effects acting on the frequency of the reference ground clock
— can be safely neglected

ii. effects on the links (mismodeling of atmospheric delays, variations of
receiver/antenna delays, multipath effects, etc...)
— very likely to be uncorrelated with the looked for signal, averages with
the number of ground stations

iii. effects acting directly on the frequency of the space clock
(temperature and magnetic field variations on board the Galileo

satellites)

iv. Orbit modelling errors (mismodeling of Solar Radiation Pressure)
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® magnetic field sensitivity < 3x10-13 /G

® model the Earth magnetic field as a dipole

1[}'3_ . —_—

1074}

uncertainty and bias on LPI violation

o

uncertainty (o, )| 1

bias {paq)

10° .
10° 10
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m Effects of Solar Radiation Pressure \! ﬁ

m Effect at orbital frequency with a frequency shift (1/year) (linked
to the direction of the Sun

= Decorrelation between fit parameters occurs for ~ 1 year
integration time

1[}'2: . e e - e

105E

1074

uncertainty on LPI violation (o)

100 10 ik 10°
duration (dav)
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= Atomic clocks are rapidly improving in accuracy and stabilityx

® Chronometric Geodesy: directly measure gravity potential
differences with clock comparisons (~ 0.6 m2.s2, ~ 6 cm); and
variations of gravitational potential differences (~0.1 m2.s2 @ 7h,
~1cm @ 7h)

m Several projects linked to chronometric geodesy : ACES, ITOC,
applications to geophysics

= it will be possible, with Galileo satellites 5 and 6, and at
least one year of data, to improve on the GP-A (1976) limit
on the gravitational redshift test, down to an accuracy
around 3-4x10-5 - Details in arxiv 1508.06159 (accepted in
Classical and Quantum Gravity)
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