Tests de la gravitation et géodésie chronométrique

Séminaire du laboratoire Leprince-Ringuet

2015, 14th September Ecole Polytechnique, Palaiseau Pacôme DELVA

SYRTE

Observatoire de Paris

Université Pierre et Marie Curie

Gravitational redshift prediction

The flow of time, or the rate of a clock when compared to coordinate time, depends on the **velocity** of the clock and on the **space-time metric** (which depends on the mass/energy distribution). In the **weak-field approximation**:

$$\frac{\Delta \tau}{\tau} = \frac{\Delta f}{f} = \frac{U_B - U_A}{c^2} + \frac{v_B^2 - v_A^2}{2c^2} + O(c^{-4})$$

- U and v known $\rightarrow \Delta f$ prediction
 - = Clock syntonization
- \blacksquare U, v and $\triangle f$ known
 - = Gravitational redshift test
- Δf known $\rightarrow \Delta W$ prediction (W=U+v²/2)
 - = Chronometric geodesy

I. Progress in time & frequency metrology

II. A brief introduction to chronometric geodesy and some ongoing projects

III. Proposal for a (new) test of the gravitational redshift

Progress in time and frequency metrology

What is an atomic clock?

→ Deliver a signal with <u>stable</u> and <u>universal frequency</u>

$$\hbar\omega_{ef} = E_e - E_f$$

$$\omega(t) = \omega_{ef} \times (1 + \epsilon + y(t))$$

 $\boldsymbol{\epsilon}$: fractional frequency offset

<u>Accuracy</u>: overall uncertainty on ε

y(t): fractional frequency

fluctuations

Stability: statistical properties of y(t), characterized by the Allan

variance

atoms interrogation

correction

Motivation

- Microwave clocks: 10⁻¹⁶ accuracy (Fountains)
- In space: microwave clocks with at best 10⁻¹⁴ stability at present (GNSS)
- Best performance of optical clocks to date:
 - Accuracy: Sr, 6.4x10⁻¹⁸ (JILA); Stability: Yb, 1.6x10⁻¹⁸ after 7 h averaging (NIST)
- Research in highly accurate clocks is an active, innovative and competitive field

- Best present satellite radio techniques (GNSS, TWSTFT) reach about 1x10⁻¹⁵ frequency stability after 1 day averaging ⇒ 3 years averaging required to reach 1x10⁻¹⁸!!! – and that is being very optimistic.
- Best present optical satellite link (T2L2)
 reaches about 3x10-13 after 10 s averaging ⇒
 25 days averaging required to reach 1x10-18!!
 optimistic.
- ACES Microwave link is expected to reach $2x10^{-15}$ after 300 s averaging \Rightarrow 5 days to reach $1x10^{-18}$ optimistic.

! 2-3 order of magnitudes improvement needed!

IEN-OP comparison with 3 techniques (GPS code, GPS phase, TWSTFT) (Bauch et al., Metrologia 2006)

Long-distance clock comparisons: fibre optical links and the future

- 100-2000 km phase coherent fibre links demonstrated
- Braunschweig-Munich: $1840 \text{ km} \rightarrow 4x10^{-19}$ (MDEV) in just 100s !!!
- Continental scales only
- Intensive development going on : (Western) Europe-wide network project Refimeve+
- Fibre costs: using existing fibres dedicated to research
- Free space coherent optical links through turbulent atmosphere are in their infancy, but show potential for similar performance as fibre links (SYRTE-OCA, NIST)
- Transportable optical clocks are being developed (back to the future ?)

Droste et al., PRL 111 (2013) Gate Time τ / s

A brief introduction to chronometric geodesy

Principle of chronometric geodesy

■ Clock frequency comparison → measure directly gravity potential differences

$$\frac{\Delta f}{f} = \frac{W_B - W_A}{c^2} + O(c^{-4}), \ W = U + \frac{v^2}{2}$$

$$10^{-18} \leftrightarrow 0.1 \text{ m}^2.\text{s}^{-2} \leftrightarrow 1 \text{ cm}$$

Isochronometric surface and equipotential

- An isochronometric surface is a surface where all clocks beat at the same rate.
- They are almost equivalent to equipotential surfaces of the gravity field (differences of the order of 2 mm)

$$\left. \frac{\mathrm{d}\tau}{\mathrm{d}t} \right|_{S} = \mathrm{cst}$$

■ Let t be the time given by a clock at infinity and at rest in the GCRS. Then the reference isochronometric surface (TT) defined by IAU is:

$$\frac{\mathrm{d}\tau}{\mathrm{d}t} = \mathrm{cst} = 1 - L_G$$

where $L_G = 6.969290134 \times 10^{-10}$ is a defining constant (IAU resolution B1.9, 2000)

• From this definition we get a reference equipotential

$$W_0 \equiv U + \frac{v^2}{2} = c^2 L_G + O(c^{-2})$$

- \rightarrow variation of the geoid \sim 2 mm/y \rightarrow 2*10⁻¹⁸ in 10 years
- → use of clocks to unify height systems

Measurement of J2

■ As a proof-of-principle, one can determine (roughly) J₂ with two clocks:

$$\frac{\Delta f}{f} = \frac{W_B - W_A}{c^2} + O(c^{-4}) , W = U + \frac{v^2}{2}$$

$$U = \frac{GM_E}{r} \left[1 + \frac{J_2 R_E^2}{2r^2} \left(1 - 3\sin(\phi)^2 \right) \right]$$

B: SYRTE FO2 (Paris, France)

$$J_2 = (1.097 \pm 0.016) \times 10^{-3}$$

- Error of ~1.4% compare to best known value
- However, ground clocks are sensitive to higher order multipoles

Chronometric geodesy with ACES

- Measure "absolute" altitude of clocks (referenced to the space clock)
- Measure **ground-to-ground gravitational potential differences** up to 1 m².s⁻² accuracy (10 cm, 10⁻¹⁷ relative frequency shift)

International Timescales with Optical Clocks (ITOC)

A coordinated programme of optical clock comparisons

The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union

Local optical frequency comparisons using femtosecond combs

Frequency comparisons using transportable optical clocks

Optical frequency comparisons using broad bandwidth TWSTFT

Absolute frequency measurements

ITOC : Gravitational redshift corrections

- Determination of the static gravity potential at all clock locations
- Development of a refined European geoid model including new gravity observations around all relevant clock sites (IFE)
- Investigation of time-variable components of the gravity potential, e.g. due to tides.

SYRTE clocks leveling campaign (IGN SGN Travaux Spéciaux)

ITOC: proof-of-principle clock-based geodesy experiment

Altitude 1 298 m

12868 m

■ Aim: to demonstrate that optical clocks can be used to measure gravity potential differences over medium-long baselines with high temporal

resolution.

■ Height difference ~ 1000 $m \rightarrow Gravitational redshift$ **~** 10^{−13}

Usine C

Pointe du Fréjus

Altitude 2932 m

ITALIE

■ Target → resolution of tens of cm in a few hours

Chronometric geodesy for high resolution geopotential

- Collaboration between Syrte/Obs.Paris, LAREG/IGN and LKB
- Evaluating the contribution of optical clocks for the determination of the geopotential at high spatial resolution
 - Find the best locations points to put optical clocks to improve the determination of the geopotential
 - Evaluation of the possibility to replace many poor gravity data with one accurate clock measurement

Proposal for a test of the gravitational redshift with Galileo satellites 5 and 6

The story of Galileo 5 and 6

- - Galileo satellites 5 and 6 were launched with a Soyuz rocket on 22 august 2014 on the wrong orbit due to a technical problem
 - Launch failure was due to a temporary interruption of the joint hydrazine propellant supply to the thrusters, caused by freezing of the hydrazine, which resulted from the proximity of hydrazine and cold helium feed lines.
 - Last launch of Galileo satellites 9 and 10 occured on September 11th

For a Keplerian orbit one shows that :

$$\tau(t) = \left(1 - \frac{3Gm}{2ac^2}\right)t - \frac{2\sqrt{Gma}}{c^2}e\sin E(t) + \text{Cste}$$

constant frequency bias

eccentricity correction

- One need an accurate clock to measure the constant frequency bias
- The eccentricity correction is a periodic term → use the stability of the clock to "average" the random noise
- Limitations are due to mismodeled systematics effects

Gravity Probe A (1976)

- - Test of the redshift on a **single parabola**
 - Continuous two-way microwave link between a spaceborne hydrogen maser clock and ground hydrogen masers
 - Frequency shift verified to 7*10⁻⁵
 - Gravitational redshift verified to 1.4*10⁻⁴

R. Vessot et al., GRG 1979, PRL 1980, AdSR 1989

Simulation of :

- 1. Galileo 5 and 6 orbits
- 2. Realistic onboard clock noise
- **3. Gravitational Redshit Signal** (including a Local Position Invariance violation, random noise and systematic effects)

Analysis of the simulated signal with two different methods:

- 1. **Matched Filtering** in the frequency domain
- 2. **Linear Least-Square + Monte-Carlo** in the time domain

- Simple phenomenological model for LPI violation (C. Will, LRR 2014)
- Alpha is = 0 in GR
- GP-A limit : alpha $< 1.4x10^{-4}$

$$\tilde{y}(\alpha) = -(1+\alpha)\frac{GM}{c^2 r_s}$$

L. Prange et al., IAG
Potsdam
Proceedings, 2014,
accepted for
publication

MDEV of the simulated clock noise

- White noise ~5x10⁻¹⁴ @ 1000s
- Flicker noise ~8x10⁻¹⁵

L. Prange et al., IAG
Potsdam
Proceedings, 2014,
accepted for

Simulation of onboard clock noise

PSD of the simulated clock noise

- White noise ~4x10⁻²⁴
- Flicker noise
 ~4x10⁻²⁹ @ 1 Hz
 ~2x10⁻²⁴ @ signal frequency

Matched filtering method

Sensitivity is the inverse of the signal-to-noise (SNR) ratio ρ , which is maximized with **matched filtering**

$$\rho^2 = \int_{-\infty}^{+\infty} \frac{|\tilde{X}(f)|^2}{S_N(f)} \mathrm{d}f \qquad \begin{cases} \tilde{X}(f) \text{: Fourier transform of the (ideal) signal} \\ S_N(f) \text{: PSD of the random noise} \end{cases}$$

Linear least-square method

Find the minimum of the merit function χ^2 with respect to alpha

$$\chi^{2} = \sum_{i=1}^{N} \left[(y(t_{i}) + \epsilon_{i} + \epsilon_{\text{sys}}) - (\tilde{y}(\alpha; t_{i}) + A) \right]^{2}$$

Sensitivity of the gravitational redshift test

- The best actual limit on grav. redshift (GP-A) is reached after ~2 weeks with Galileo 5
- After one year of integration the sensitivity is ~3x10⁻⁵ → a factor of 5 better than GP-A, which was a dedicated experiment (expected sensitivity of ACES-PHARAO is 2-3x10⁻⁶)
- The two very different methods agree on the sensitivity of the test

10²

• We proved mathematically that $\sigma_{\alpha} = \rho^{-1}$

duration (day)

10¹

Problem: all systematic effects that mimic the gravitational redshift signal will induce a bias in the estimation of alpha → fake violation of LPI

 10^{3}

10⁰

Systematic effects

- i. effects acting on the **frequency of the reference ground clock**
 - → can be safely neglected
- ii. effects on the **links** (mismodeling of atmospheric delays, variations of receiver/antenna delays, multipath effects, etc...)
 - \rightarrow very likely to be uncorrelated with the looked for signal, averages with the number of ground stations
- iii. effects acting directly on the **frequency of the space clock** (temperature and magnetic field variations on board the Galileo satellites)
- iv. **Orbit modelling** errors (mismodeling of Solar Radiation Pressure)

- magnetic field sensitivity < 3×10⁻¹³ /G
- model the Earth magnetic field as a dipole

Solar Radiation Pressure

- Effects of Solar Radiation Pressure
 - Effect at orbital frequency with a frequency shift (1/year) (linked to the direction of the Sun

■ Decorrelation between fit parameters occurs for ~ 1 year

integration time

Conclusion

- Atomic clocks are rapidly improving in accuracy and stability
- Chronometric Geodesy: directly measure gravity potential differences with clock comparisons (~ 0.6 m².s⁻², ~ 6 cm); and variations of gravitational potential differences (~0.1 m².s⁻² @ 7h, ~ 1 cm @ 7h)
- Several projects linked to chronometric geodesy : ACES, ITOC, applications to geophysics
- it will be possible, with Galileo satellites 5 and 6, and at least one year of data, to improve on the GP-A (1976) limit on the gravitational redshift test, down to an accuracy around 3-4x10⁻⁵ → Details in arxiv 1508.06159 (accepted in Classical and Quantum Gravity)